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The construction of exact multiple pole solutions of some
(2+1)-dimensional integrable nonlinear evolution equations
via the ∂-dressing method

V G Dubrovsky†
Consortium EINSTEIN‡, Dipartimento di Fisica, Universita di Lecce, 73100 Lecce, Italy

Received 29 June 1998

Abstract. The exact multiple pole solutions of several (2 + 1)-dimensional integrable
nonlinear evolution equations, such as the Kadomtsev–Petviashvili equation, the modified
Kadomtsev–Petviashvili equation and the Davey–Stewartson system of equations and others by
the use of the∂-dressing method are constructed.

1. Introduction

The problem of investigating multiple pole solutions of integrable nonlinear equations is a
classical one. For the focusing nonlinear Schrödinger equation it was considered in [1, 2], for
the modified Korteweg–de Vries equation in [3] and for the sine–Gordon equation in [4, 5].
Recently, in [6, 7] an integrable chiral model in (2+1) dimensions was analysed from this point
of view and in [8] multiple poles for the Kadomtsev–Petviashvili I equation were considered.
In [9] the multiple pole solutions of the Davey–Stewartson (DS-II) equation with arbitrary
rational localization in the plane were obtained.

There are several known approaches for the construction of multiple pole solutions of
integrable equations. Such solutions can be obtained by the Hirota method, by means of
Fredholm determinants [4] or by the use of the Wronskian scheme [9]. A popular trick
in calculating multiple pole solutions from the known simple pole multisolitons solutions
consists in coalescing of the simple poles [1]. In the frameworks of the IST method the
multiple pole solutions can be obtained by solving the Gelfand–Levitan–Marchenko integral
equations [2, 3, 5] or the singular integral equations of the Riemann–Hilbert problems [1, 8]. A
very convenient perspective for the calculation of multiple pole solutions of (2+1)-dimensional
integrable nonlinear equations is the∂-dressing method of Zakharov and Manakov [10]. Let
us explain what the term multiple pole means in the context of this method.

The basic equation of the∂-dressing method in the scalar case is the following nonlocal
∂-problem for the eigenfunctionχ :

∂χ(λ, λ)

∂λ
= (χ ∗ R)(λ, λ) =

∫ ∫
C

dλ′ ∧ dλ′ χ(λ′.λ′)R(λ′, λ′; λ, λ)
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which in the case of canonical normalization (χ → 1 atλ→∞) is equivalent to the following
singular integral equation:

χ(λ) = 1 +
∫ ∫

C

dλ′ ∧ dλ′

2π i(λ′ − λ)
∫ ∫

C

dµ ∧ dµχ(µ,µ)R0(µ,µ; λ′, λ′) eF(µ)−F(λ
′).

Here only the dependence on spectral variablesµ, λ is shown, the concrete choice of the
kernelR0(µ,µ; λ, λ) and the functionF(λ) depend on the concrete integrable nonlinear
equation. The functionχ is also the eigenfunction of some auxiliary linear problems (the
integrable nonlinear equation in turn is the compatibility condition of these linear problems)
which define the spacetime dependence ofχ . The eigenfunctionχ(λ) may have some
analytic or non-analytic properties on the complex variableλ. If one chooses for the kernel
R0 the expression in the form of the sum of products of complex delta functions and their
derivatives

R0(µ,µ; λ, λ) = π

2

∑
p

N1p,N2p∑
k,m=0

r
(p)

k (µ)l(p)m (λ)δ(k)(µ− µp)δ(m)(λ− λp)

then from the singular integral equation forχ one obtains

χ(λ) = 1 +
∑
p

(
χ
(p)

−1

λ− λp +
χ
(p)

−2

(λ− λp)2 + · · ·
)
.

In this expression forχ the term like asχ(p)−m/(λ − λp)m corresponds to the multiple pole of
multiplicity m at the pointλ = λp. Such a structure of the functionχ gives the name multiple
pole to the corresponding solutions: if the Laurent series expansion ofχ(λ) terminates on the
m-pole term then one talks about them-pole multiple pole solution of the integrable nonlinear
equation.

Let us remark that the existence of multiple pole terms in the Laurent series expansion of
χ is closely connected with the non-self-adjointness of the operator of the first auxiliary linear
(scattering) problem for given a integrable nonlinear equation. The eigenfunctionsχ(λ) of the
self-adjoint operators have only simple poles and the solutions of the corresponding integrable
nonlinear equations are simple pole solutions.

In the present paper the broad classes of multiple pole solutions of such (2+1)-dimensional
integrable nonlinear equations, such as the Kadomtsev–Petviashvili (KP) equation, the
modified Kadomtsev–Petviashvili (mKP) equation, the Davey–Stewartson (DS) system of
equations, the two-dimensional generalization of a dispersive long wave (2DGDLW) system
and the two-dimensional generalization of the sinh–Gordon (2DGShG) equation, are calculated
by the use of the∂-dressing method [10]. Amongst these solutions are rational-exponential and
also pure rational solutions, some of which are non-singular, the specific behaviour of these
solutions depending on their spectral characterization and on the type of integrable nonlinear
equation.

Note in conclusion that the calculations of multiple pole solutions via the∂-dressing
method are very simple and more effective then the calculations based, for example, on the
trick of coalescing simple poles or on the use of the nonlocal Riemann–Hilbert problem. By the
use of the∂-dressing method one can also calculate the multiple pole solutions of other (2+1)-
dimensional integrable nonlinear equations, such as the DS-I, DS-II and Veselov–Novikov
equations and so on. This will be done in a separate paper.
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2. The basic ingredients of the∂-dressing method

It is well known that the∂-dressing method is a very powerful method for the solution of
integrable nonlinear evolution equations. This method was discovered by Zakharov and
Manakov [10] (see also [11–16]) and has now been applied successfully to (1+1)-dimensional
and also to (2 + 1)-dimensional integrable nonlinear evolution equations. The∂-dressing
method allows one to construct Lax pairs, to solve initial and boundary value problems, to
calculate the broad classes of exact solutions and so on.

Let us recall the basic ingredients of the∂-dressing method [10] for the (2+1)-dimensional
case. At first one postulates the nonlocal∂-problem:

∂χ(λ, λ)

∂λ
= (χ ∗ R)(λ, λ) =

∫ ∫
C

dλ′ ∧ dλ′ χ(λ′.λ′)R(λ′, λ′; λ, λ). (1)

For the sake of definiteness we restrict our attention to the case of the scalar complex-valued
functionsχ andR with the canonical normalization forχ (χ → 1, asλ → ∞). We also
assume that the problem (1) is uniquely solvable. Equation (1) defines the behaviour of the
wavefunctionχ in the spectral or momentum space.

Then one introduces the dependence of the kernelR and consequently the functionχ on
the space and time variablesξ, η, t :

∂R

∂ξ
= I1(λ′)R(λ′, λ′; λ, λ; ξ, η, t)− R(λ′, λ′; λ, λ; ξ, η, t)I1(λ)

∂R

∂η
= I2(λ′)R(λ′, λ′; λ, λ; ξ, η, t)− R(λ′, λ′; λ, λ; ξ, η, t)I2(λ)

∂R

∂t
= I3(λ′)R(λ′, λ′; λ, λ; ξ, η, t)− R(λ′, λ′; λ, λ; ξ, η, t)I3(λ) (2)

i.e.

R(λ′, λ′; λ, λ; ξ, η, t) = R0(λ
′, λ′; λ, λ) exp(F (λ′)− F(λ)) (3)

where

F(λ) := I1(λ)(ξ − ξ0) + I2(λ)(η − η0) + I3(λ)(t − t0). (4)

HereIi(λ) (i = 1, 2, 3) are some multinomial or rational functions ofλ, the choice of these
functions depending on the specific integrable equation. The role of the variablesξ, η, t will
be played by the usual space and time variablesx, y, t or their combinationsξ = x + σy,
η = x − σy with σ 2 = ±1. By introducing the ‘long’ derivatives

Dξ = ∂ξ + I1(λ) Dη = ∂η + I2(λ) Dt = ∂t + I3(λ) (5)

the dependence ofR on ξ, η, t can be expressed in the form

[Dξ,R] = 0 [Dη,R] = 0 [Dt,R] = 0. (6)

By the use of derivatives (5) one can then construct linear operators

L =
∑

ulmn(ξ, η, t)D
l
ξD

m
η D

n
t (7)

which satisfy the condition[
∂

∂λ
, L

]
= 0 (8)

of the absence of singularities onλ. For such operatorsL the functionLχ obeys the same
∂-equation as the functionχ . If there are several operatorsLi of this type, then by virtue of
the unique solvability of (1) one hasLiχ = 0.
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The solution of the∂-problem (1) with the canonical normalizationχ0 = 1 is equivalent
to the solution of the following singular integral equation:

χ(λ) = 1 +
∫ ∫

C

dλ′ ∧ dλ′

2π i(λ′ − λ)
∫ ∫

C

dµ ∧ dµχ(µ,µ)R0(µ,µ; λ′, λ′) eF(µ)−F(λ
′). (9)

From (9) one obtains the following for the coefficientsχ̃0 andχ−1 of the series expansion of
χ near the pointsλ = 0 andλ = ∞ (χ = χ̃0 + χ1λ + · · · andχ = χ0 + (χ−1)/λ + · · ·):

χ̃0 = 1 +
∫ ∫

C

dλ ∧ dλ

2π iλ

∫ ∫
C

dµ ∧ dµχ(µ,µ)R0(µ,µ; λ, λ) eF(µ)−F(λ) (10)

χ−1 = −
∫ ∫

C

dλ ∧ dλ

2π i

∫ ∫
C

dµ ∧ dµχ(µ,µ)R0(µ,µ; λ, λ) eF(µ)−F(λ) (11)

whereF(λ) is given by formula (4).
For the construction of multipole solutions in the present paper we consider the following

kernelR0 of the∂-problem:

R0(µ,µ; λ, λ) = π

2

∑
p

N1p∑
k=0

N2p∑
m=0

r
(p)

k (µ)l(p)m (λ)δ(k)(µ− νp)δ(m)(λ− τp). (12)

Here ν1, ν2, . . . and τ1, τ2, . . . are two sets of isolated points distinct from the origin and
δ(k)(λ− λp) is the designation of thekth derivative of the complex delta function:

δ(k)(µ− λp) := ∂k

∂µk
δ(µ− λp). (13)

For such a delta-form kernel, which is the sum of products of delta functions and their
derivatives, one can construct in closed determinant form the multipole solutions of all known
(2 + 1)-dimensional integrable nonlinear equations.

For the kernelR0 of form (12) one has from (10) and (11) the following for the coefficients
χ̃0, χ−1 of the Taylor expansions ofχ :

χ̃0 = 1 + i
∑
p

N1p,N2p∑
k,m=0

∫ ∫
C

dλR dλI
1

λ

×
∫ ∫

C

dµR dµI χ(µ,µ)r
(p)

k (µ)l(p)m (λ)δ(k)(µ− νp)δ(m)(λ− τp) eF(µ)−F(λ)

(14)

χ−1 = −i
∑
p

N1p,N2p∑
k,m=0

∫ ∫
C

dλR dλI

×
∫ ∫

C

dµR dµIχ(µ,µ)r
(p)

k (µ)l(p)m (λ)δ(k)(µ− νp)δ(m)(λ− τp) eF(µ)−F(λ).

(15)

Introducing the quantitiesXpq andYpq by the formulae

Xpq :=
N1p,N1q∑
k,m=0

∫ ∫
C

dλR dλI

×
∫ ∫

C

dµR dµIχ(µ,µ)r
(p)

k (µ)l(q)m (λ)δ(k)(µ− νp)δ(m)(λ− τq) eF(µ)−F(λ)

(16)
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Ypq :=
N1p,N2q∑
k,m=0

∫ ∫
C

dλR dλI
1

λ

×
∫ ∫

C

dµR dµIχ(µ,µ)r
(p)

k (µ)l(q)m (λ)δ(k)(µ− νp)δ(m)(λ− τq) eF(µ)−F(λ)

(17)

one obtains from the integral equation (9) the following algebraic systems of equations:∑
s

ApsXsq = Bpq (18)∑
s

ApsYsq = Cpq (19)

where

Apq := δpq + i
N1p,N2q∑
k,m=0

∫ ∫
C

dλR dλI

×
∫ ∫

C

dµR dµI
eF(µ)−F(λ)

µ− λ r
(p)

k (µ)l(q)m (λ)δ(k)(µ− νp)δ(m)(λ− τq) (20)

Bpq :=
N1p,N2q∑
k,m=0

∫ ∫
C

dλR dλI

×
∫ ∫

C

dµR dµI eF(µ)−F(λ)r(p)k (µ)l(q)m (λ)δ(k)(µ− νp)δ(m)(λ− τq) (21)

Cpq :=
N1p,N2q∑
k,m=0

∫ ∫
C

dλR dλI

×
∫ ∫

C

dµR dµI
1

λ
eF(µ)−F(λ)r(p)k (µ)l(q)m (λ)δ(k)(µ− νp)δ(m)(λ− τq). (22)

By the use of solutionsXpq andYpq of equations (18) and (19) the coefficientsχ̃0 andχ−1 can
be expressed in the following way:

χ̃0 = 1 + i TrY = 1 + iTr
C

A
= det

(
1 + i

C

A

)
(23)

χ−1 = −iTrX = −iTr
B

A
. (24)

One can usually express the solutions of such (2 + 1)-dimensional integrable nonlinear
equations as the KP, mKP and DS equations and so on through the coefficientsχ̃0 andχ−1

of the series expansion of the eigenfunctionχ . So formulae (20)–(24) are very important for
the calculations of exact multiple pole solutions of these equations. In order to satisfy some
reductions (for example, the reality condition or others) on the solutions, one must impose
further restrictions on the kernelR0 of the∂-dressing problem (1). This will be done in the
following sections where specific integrable nonlinear equations will be considered.

3. The rational-exponential multiple pole solutions of the KP equation

The famous KP equation has the form

ut + uxxx + 6uux + 3σ 2∂−1
x uyy = 0 (25)
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whereσ 2 = ±1,σ = i for the KP-I equation andσ = 1 for the KP-II equation. This equation
is the compatibility condition for the following two linear problems [10]

L1χ = (σD2 +D2
1 + u)χ = 0 (26)

L2χ = (D2
3 + 4D3

1 + 6uD1 + 3ux − 3σ(∂−1
x uy))χ = 0 (27)

where the long derivatives areD1 = ∂x + iλ,D2 = ∂y + (1/σ)λ2,D3 = ∂t + 4iλ3.
The reconstruction formula for the solutionsu(x, y, t) has the form [10]

u = −2i∂xχ−1(x, y, t) (28)

whereχ−1 is the coefficient underλ−1 in the Taylor expansion of the functionχ near the point
λ = ∞ which is given by formula (11). For the KP equation the functionF(λ) has the form
[10]

F(λ) = iλ(x − x0) +
1

σ
λ2(y − y0) + 4iλ3t. (29)

The reality condition for the solutionsu(x, y, t) of the KP equation gives the following
restrictions on the kernelR0(µ,µ; λ, λ) of the∂-problem (1):

R0(µ,µ; λ, λ) = R0(λ, λ;µ,µ) (30)

for the KP-I (σ 2 = −1) and

R0(µ,µ; λ, λ) = R0(−µ,−µ;−λ,−λ) (31)

for the KP-II (σ 2 = 1) cases.
From formulae (24) and (28) one obtains for the multiple pole solutions of the KP equation

u = −2i∂xχ−1 = −2∂xTr
B

A
. (32)

However, from (20), (21) and (29) one has for the matrixB the following expression through
the matrixA: B = −∂xA. Hence by the use of the well known formula Tr((1/A)∂xA) =
∂x ln(detA)we obtain for the multiple pole solutions of the KP equation the general determinant
formula

u = 2∂2
x ln(detA). (33)

Now let us calculate specific examples of rational-exponential multiple pole solutions of the
KP equation.

The reality condition (30) of the KP-I equation satisfies, for example, the following kernel
R0 of the∂-dressing problem (1) with derivatives of delta functions:

R0 = π

2

∑
p

apδ
(kp)(µ− λp)δ(kp)(λ− λp). (34)

Hereap (p = 1, 2, . . . , N) are some real constants andkp are arbitrary non-negative integer
numbers. Let us perform the detailed calculations of multiplek + 1-pole solutions of the KP-I
equation which correspond to one term in the sum (34):

R0 = π

2
a1δ

(k)(µ− λ1)δ
(k)(λ− λ1). (35)

For the matrixA in (20) one easily obtains the expression

A = 1 + ia1 eF(λ1)−F(λ1)D
(+)k
λ1
D
(−)k
λ1

1

λ1− λ1
. (36)



The∂-dressing method 375

Here, for convenience, the differential operatorsD
(+)
λ andD(−)

µ are introduced by the following
relations:

D(+)
µ f (µ) := e−F(µ)

∂

∂µ
(eF(µ)f (µ)) = f ′(µ) + F ′(µ)f (µ)

D
(−)
λ g(λ) := eF(λ)

∂

∂λ
(e−F(λ)g(λ)) = g′(λ)− F ′(λ)g(λ). (37)

One can easily obtain useful formulae with these derivatives:

D
(−)k
λ

1

µ− λ =
k∑
n=0

k!

n!

(D
(−)n
λ · 1)

(µ− λ)k−n+1
D(+)k
µ

1

µ− λ =
k∑
n=0

k!

n!

(−1)k−n(D(+)n
µ · 1)

(µ− λ)k−n+1
(38)

and

D(+)k
µ D

(−)k
λ

1

µ− λ =
k∑
n=0

k∑
m=0

CnkC
m
k (2k − n−m)!(−1)k−m

(D
(−)n
λ · 1)(D(+)m

µ · 1)
(µ− λ)2k+1−m−n . (39)

Using (36), (38) and (39) one obtains for the matrixA in (20) the expression

A = 1− a1 eF(λ1)−F(λ1)

2λ1I

k∑
n=0

k∑
m=0

CnkC
m
k (2k − n−m)!

(D
(−)n
λ1
· 1)

(λ1− λ1)k−n
(D

(+)m
λ1
· 1)

(λ1− λ1)k−m
. (40)

Here and belowλ1 = λ1R + iλ1I . For the quantity1F := F(λ1)− F(λ1), by the use of (29)
one has for the KP-I case (σ = i):

1F = 2λ1I (x − x0 − 2λ1R(y − y0)− 4(λ2
1I − 3λ2

1R)t). (41)

It is convenient to also introduce the quantityX(λ), which by definition has the form

X(λ) := −iF ′(λ) = x − x0 − 2λ(y − y0) + 12λ2t. (42)

For the solutionu(x, y, t) of the KP-I equation one obtains from (33), (36), (39) and (40) the
expression

u(x, y, t) = 2
∂2

∂x2
× ln

(
1− a1 e1F

2λ1I

×
k∑
n=0

k∑
m=0

CnkC
m
k (2k − n−m)!

(D
(−)n
λ1
· 1)

(λ1− λ1)k−n
(D

(+)m
λ1
· 1)

(λ1− λ1)k−m

)
. (43)

Due to definitions (37) and to formula (42) one obtains the useful relation

(D
(−)
λ1
· 1) = (D(+)

λ1
· 1). (44)

Using (44) one can conclude that the double sum in (43) has positive values and the solution
u(x, y, t) given by (43) under the conditiona1/2λ1I < 0 is non-singular.

Let us consider particular cases of the general formula (43) obtained foru(x, y, t). For
k = 0 one obtains from (43) the well known formula for the line soliton of the KP-I equation:

u(x, y, t) = 2
∂2

∂x2
ln

(
1− a1

2λ1I
e1F

)
. (45)

For thek = 1 case one obtains from (43) with the use of (37) and (42) the following rational-
exponential multiple pole solution of the KP-I equation:

u(x, y, t) = 2
∂2

∂x2
ln

(
1− a1 e1F

2λ1I

{∣∣∣∣X(λ1)− 1

2λ1I

∣∣∣∣2 +
1

4λ2
1I

})
. (46)

It is evident that this solution under the conditiona1/2λ1I < 0 is non-singular.
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Let us rewrite expression (46) for the solutionu(x, y, t) in a more explicit form:

u(x, y, t) = 2

{
2λ2

1I e−2λ1I (X̃+8λ2
1I t+X0)

[(
X̃ +

1

2λ1I

)2

+ 4λ2
1I Ỹ

2 − 1

4λ2
1I

]
+

(
X̃ +

1

2λ1I

)2

− 4λ2
1I Ỹ

2 − 1

4λ2
1I

}{
e−2λ1I (X̃+8λ2

1I t+X0) +

(
X̃ − 1

2λ1I

)2

+4λ2
1I Ỹ

2 +
1

4λ2
1I

}2

. (47)

Here

X̃ := x − x0 − 12(λ2
1R + λ2

1I )t − 2λ1R(y − y0 − 12λ1Rt)

Ỹ := y − y0 − 12λ1Rt e−2λ1IX0 := −2λ1I

a1I
> 0.

This simplest rational-exponential solution of type (47) of the KP-I equation was obtained for
the first time in the book by Matveev and Salle [17].

For thek = 2 case one can easily obtain from (43) with the use of (37) and (42) the
following rational-exponential multiple pole solution of the KP-I equation:

u(x, y, t) = 2
∂2

∂x2
ln

(
1− a1 e1F

2λ1I

{∣∣∣∣X2(λ1)− iX′(λ1)− X(λ1I )

λ1I
+

1

2λ2
1I

∣∣∣∣2
+

1

λ2
1I

∣∣∣∣X(λ1)− 1

λ1I

∣∣∣∣2 +
1

4λ4
1I

})
. (48)

It is evident that this solution under the conditiona1/2λ1I < 0 is also non-singular.
For the more general kernelR0 of the form (34) the calculations can be performed without

difficulties. The solutions of the KP-I equation are given in this case by (33), where the matrix
A has the form

Apq = δpq + iap eF(λp)−F(λq)D(+)kp
λp

D
(+)kq
λq

1

λp − λq
= δpq + i

ap eF(λp)−F(λq)

λp − λq

×
kp∑
m=0

kq∑
m=0

CnkpC
m
kq
(kp + kq − n−m)!

(D
(−)m
λp
· 1)

(λq − λp)kp−n
(D

(−)n
λq
· 1)

(λp − λq)kq−m
. (49)

Under some choice of constantsap andλp these solutions can be non-singular.
Now let us consider another simple kernelR0 of the∂-dressing problem (1). This kernel

also contains delta functions with derivatives, it satisfies the reality condition (30) for the KP-I
equation and has the form

R0 = π

2
(a1δ(µ− λ1)δ

(k)(λ− λ1) + a1δ
(k)(µ− λ1)δ(λ− λ1)). (50)

The matrixA (20) for this kernel has the following expression:

A =

 1 + i(−1)ka1 e1FD(−)k
λ1

1

λ1− λ1
ia1

e1F

λ1− λ1

ia1 e1FD(+)k
λ1
D
(−)k
λ1

1

λ1− λ1
1 + i(−1)ka1 e1FD(+)k

λ1

1

λ1− λ1

 (51)

where, due to (40),

1F := F(λ1)− F(λ1) = 2λ1I (x − x0 − 2λ1R(y − y0)− 4(λ2
1I − 3λ2

1R)t).

The matrix elements ofA in (51) can be calculated by use of formulae (38) and (39).
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After simple calculations using (38), (39), (41), (42) and (51) one obtains for the matrix
A in thek = 1 case

A =

 1 +
ia1

λ1I

(
X(λ1)− 1

2λ1I

)
e1F i

a1

2λ1I
e1F

i
a1

2λ1I

{∣∣∣∣X(λ1) +
1

2λ1I

∣∣∣∣2 +
1

4λ2
1I

}
e1F 1− ia1

2λ1I

(
X(λ1)− 1

2λ1

)
e1F

 . (52)

For the solutionu(x, y, t) of the KP-I equation one finally has from (33) and (52)

u(x, y, t) = 2
∂2

∂x2
ln

( |a1|2
4λ2

1I

{∣∣∣∣X(λ1) +
1

2λ1I

∣∣∣∣2 +
1

4λ2
1I

}
e21F

+

∣∣∣∣1− ia1

2λ1I

(
X(λ1)− 1

2λ1I

)
e1F

∣∣∣∣2). (53)

It is evident that this solution is non-singular.
The calculations of multiple pole solutions of the KP-II equation can be performed

analogously to the case of KP-I, but all these solutions are singular. In the KP-II case, for
example, the following kernelR0 of the ∂-dressing problem (1) corresponds to the reality
condition (31):

R0 = π

2
a1δ

(k)(µ− iα1)δ
(k)(λ + iα1). (54)

Herea1 is a real constant. The matrixA in (20) has in this case the form

A = 1 + eF(iα1)−F(−iα1)ia1D
(+)k
µ D

(−)k
λ

1

µ− λ
∣∣∣∣
µ=iα1,λ=−iα1

. (55)

In the simplest case (k = 1) in (54) one has from (55) forA

A = 1 +
a1

2α1

{(
X(α1) +

1

2α1

)(
X(−α1) +

1

2α1

)
+

1

4α2
1

}
eF(iα1)−F(−iα1). (56)

HereX(α) is defined as follows:

X(α) := −iF ′(iα) = x − x0 + 2α(y − y0)− 12α2t. (57)

For the multiple pole rational-exponential solutionu(x, y, t) of the KP-II equation one obtains
from (33) the expression

u(x, y, t) = 2
∂2

∂x2
ln

(
1 +

a1

2α1

{(
X(α1) +

1

2α1

)(
X(−α1) +

1

2α1

)
+

1

4α2
1

}
eF(iα1)−F(−iα1)

)
. (58)

A more explicit form of this solution is as follows:

u(x, y, t) =
[

8α3
1

a1
e2α1(x̃+8α2

1t)

((
x̃ − 1

2α1

)2

− 4α2
1ỹ

2 − 1

4α2
1

)
− 2

(
x̃ +

1

2α1

)2

− 8α2
1ỹ

2

]
×
[

2α1

a1
e2α1(x̃+8α2

1t) +

(
x̃ +

1

2α1

)2

− 4α2
1ỹ

2 +
1

4α2
1

)2]−2

. (59)

Herex̃ = x − 12α2
1t − x0, ỹ = y − y0. It is evident that this solution is singular.
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4. The rational multiple pole solutions of the KP equation

By the∂-dressing method the rational multiple pole solutions of integrable nonlinear equations
can also easily be constructed. Let us calculate some specific examples of rational multiple
pole solutions of the KP equation. For example, the following kernelR0 of the ∂-dressing
problem (1) satisfies the reality condition (30) of the KP-I equation

R0 = π

2

∑
p

(apδ(µ− λp)δ(kp)(λ− λp) + apδ
(kp)(µ− λp)δ(λ− λp)). (60)

Let us perform the detailed calculations of rational solutions for the kernelR0 with one term
in the sum (60):

R0 = π

2
(a1δ(µ− λ1)δ

(k)(λ− λ1) + a1δ
(k)(µ− λ1)δ(λ− λ1)). (61)

The matrixA given by (20) has for such a kernel the form:

A =

 1 + i(−1)ka1 Res

(
eF(µ)−F(λ1)

µ− λ1
D
(−)k
λ1

1

µ− λ1

)∣∣∣∣
µ=λ1

ia1 eF(λ1)−F(λ1)D
(+)k
λ1
D
(−)k
λ1

1

λ1− λ1

ia1
eF(λ1)−F(λ1)

λ1− λ1

1 + i(−1)ka1 Res

(
eF(λ1)−F(λ)

λ− λ1
D
(+)k
λ1

1

λ1− λ

)∣∣∣∣
λ=λ1

 . (62)

In deriving the expressions for diagonal elements of the matrixA the following important
identity can be used:∫ ∫

C

dµR dµI

∫ ∫
C

dλR dλI (µ− λ)Nδ(µ− λp)δ(λ− λp) = δN,0. (63)

This relation is valid for all integer numbersN .
Using (62) and (63) one can easily calculate the matrix elementsApq of matrixA. One

has for the diagonal elements

A11 = 1 + i(−1)ka1

k∑
n=0

k!

n!(k + 1− n)! (D
(−)n
λ1
· 1)(D(+)k+1−n

λ1
· 1)

= 1− i
(−1)k

k + 1
(D

(−)k+1
λ1

· 1) (64)

A22 = 1− i(−1)ka1

k∑
n=0

k!

n!(k + 1− n)! (D
(+)n
λ1
· 1)(D(−)k+1−n

λ1
· 1)

= 1 +
i(−1)k

k + 1
(D

(+)k+1
λ1

· 1). (65)

In obtaining these expressions forA11 andA22 the simple identity

((D
(−)
λ +D(+)

λ )N · 1) = 1 (66)

is very useful. For the non-diagonal elementA21 due to (39) one derives the expression

A21 = − a1

2λ1I
eF(λ1)−F(λ1)

k∑
n=0

k∑
m=0

CnkC
m
k (2k − n−m)!

(D
(−)n
λ1
· 1)

(λ1− λ1)k−n
(D

(+)m
λ1
· 1)

(λ1− λ1)k−m
. (67)
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Due to relation (44) it is evident thatA11 = A22 and the double sum in (67) has positive values.
Finally, due to (64), (65) and (67) one finds for rational multiple pole solutions of the KP-I
equation the following expression corresponding to the kernelR0 of the type (61):

u(x, y, t) = 2
∂2

∂x2
ln

(∣∣∣∣1− i(−1)k

k + 1
(D

(−)k+1
λ1

· 1)
∣∣∣∣2

+
|a1|2
4λ2

1I

k∑
n,m=0

CnkC
m
k (2k − n−m)!

(D
(−)n
λ1
· 1)

(λ1− λ1)k−n
·
(D

(+)m
λ1
· 1)

(λ1− λ1)k−m

)
. (68)

Evidently, the obtained rational multiple pole solution is non-singular.
Let us consider particular cases of the obtained general formula (68). It is convenient to

express all relations by the use of the functionX(λ) which is defined by the relation

(D
(−)
λ · 1) = −iF ′(λ) := −iX(λ) = −i(x − x0 − 2λ(y − y0) + 12λ2t). (69)

For thek = 0 case one has from (68), taking into account (69),

u(x, y, t) = 2
∂2

∂x2
ln

(
|1 +a1X(λ1)|2 +

|a1|2
4λ2

1I

)
. (70)

This is the well known formula for the 1-lump solution of the KP-I equation. Fork = 1 one
obtains from (68), with the use of (69), the solution

u(x, y, t) = 2
∂2

∂x2
ln

(∣∣∣∣X2(λ1) + iX′(λ1) +
2i

a1

∣∣∣∣2 +
1

λ2
1I

∣∣∣∣X(λ1)− 1

2λ1I

∣∣∣∣2 +
1

4λ4
1I

)
. (71)

This is the well known non-singular solution of the KP-I equation which has been obtained
in [18] and reproduced via IST (inverse scattering transform method) based on the non-local
Riemann–Hilbert problem in the paper of Ablowitz and Villaroel [8]. Other particular cases of
the general formula (68) can be obtained without difficulty, for example the following solution
corresponds tok = 2

u(x, y, t) = 2
∂2

∂x2
ln

(∣∣∣∣X3(λ1)−X′′(λ1) + iX′(λ1)X(λ1) +
3

a1

∣∣∣∣3
+

9

4λ2
1I

(∣∣∣∣X2(λ1) + iX′(λ1)− 1

λ1I
X(λ1) +

1

2λ2
1I

∣∣∣∣2
+

∣∣∣∣X(λ1)− 1

2λ1I

∣∣∣∣2 +
1

4λ4
1I

))
. (72)

It is clear that by (68) we have the general formula of this kind of rational multiplek + 1-pole
solution of the KP-I equation. It seems that the calculation of these solutions via the∂-dressing
method is very simple and more effective than the calculations via IST based on the non-local
Riemann–Hilbert problem or calculations using the trick of coalescing of simple poles.

Let us apply the∂-dressing method for the calculations of rational multiple pole solutions
of KP-I, which correspond to another simple kernelR0 satisfying the reality condition (30):

R0 = π

2

∑
p

(apδ
(kp) (µ− λp)δ(kp)(λ− λp) + apδ

(kp)(µ− λp)δ(kp)(λ− λp)). (73)

For the kernelR0 with one term in the sum (73),

R0 = π

2
(a1δ

(k)(µ− λ1)δ
(k)(λ− λ1) + a1δ

(k)(µ− λ1)δ
(k)(λ− λ1)) (74)



380 V G Dubrovsky

the matrixA given by (20) has the form

A =

 1 + ia1 Res

(
eF(µ)−F(λ1)

µ− λ1
D(+)k
µ D

(−)k
λ1

1

µ− λ1

)∣∣∣∣
µ=λ1

ia1 eF(λ1)−F(λ1)D
(+)k
λ1
D
(−)k
λ1

1

λ1− λ1

ia1 eF(λ1)−F(λ1)D
(+)k
λ1
D
(−)k
λ1

1

λ1− λ1

1 + ia1 Res

(
eF(λ1)−F(λ)

λ− λ1
D
(+)k
λ1
D
(−)k
λ

1

λ1− λ

)∣∣∣∣
λ=λ1

 . (75)

The non-diagonal matrix elementA21 is given by (67); another non-diagonal matrix element
A12 can be calculated analogously and by using formula (39) one obtains

A12 = a1

2λ1I
eF(λ1)−F(λ1)

k∑
n=0

k∑
m=0

CnkC
m
k (2k − n−m)!

(D
(−)n
λ1
· 1)

(λ1− λ1)k−n
(D

(+)m
λ1
· 1)

(λ1− λ1)k−m
. (76)

For the diagonal matrix elements ofA one obtains by the use of (63) and (75) analogously to
the calculations of (64) and (65)

A11 = A22 = 1 + ia1(k!)
2

k∑
n=0

(D
(−)n
λ1
· 1)(D(+)2k+1−n

λ1
· 1)

n!(2k + 1− n)! . (77)

In deriving the last formula the well known sum with binomial coefficients
k∑
n=0

Cnk
(−1)n

m + n
= k!(m− 1)!

(k +m)!
(78)

was very useful.
Finally, due to (33) and (75)–(77) one finds for multiple pole rational solutions of the KP-I

equation the following general formula corresponding to the kernelR0 of the type (74):

u(x, y, t) = 2
∂2

∂x2
ln

(∣∣∣∣1 + i(k!)2
k∑
n=0

(D
(−)n
λ1
· 1)(D(+)2k+1−n

λ1
· 1)

n!(2k + 1− n)!
∣∣∣∣2

+
|a1|2
4λ2

1I

( k∑
n,m=0

CnkC
m
k (2k − n−m)!

(D
(−)n
λ1
· 1)

(λ1− λ1)k−n
·
(D

(+)m
λ1
· 1)

(λ1− λ1)k−m

)

×
( k∑
n,m=0

CnkC
m
k (2k − n−m)!

(D
(−)n
λ1
· 1)

(λ1− λ1)k−n
(D

(+)m
λ1
· 1)

(λ1− λ1)k−m

))
. (79)

The double sums in the two round brackets of the last formula due to (44) have positive values
and the obtained solution is evidently non-singular.

Let us consider the particular cases of the obtained general formula (79). In thek = 1
case the multiple pole rational solution of the KP-I equation has the form

u(x, y, t) = 2
∂2

∂x2
ln

(∣∣∣∣2X3(λ1) +X′′(λ1)− 6

a1

∣∣∣∣2
+

9

λ2
1I

(∣∣∣∣X2(λ1)− 1

2λ1I

∣∣∣∣2 +
1

4λ2
1I

)(∣∣∣∣X2(λ1) +
1

2λ1I

∣∣∣∣2 +
1

4λ2
1I

))
. (80)

This solution has been obtained in [8] by Ablowitz and Villaroel via IST based on the non-local
Riemann–Hilbert problem. By (79) we have the general formula of such kind of solution; it
seems that the calculations by the use of the∂-dressing method are much simpler and they
directly lead to the general formulae corresponding to the kernels of the∂-problem with
arbitrary multiplicity of the poles in the eigenfunctionχ .
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5. The multiple pole solutions of the mKP equation

The mKP equation has the form [19]

ut + uxxx − 3σ 2( 1
2u

2ux − ∂−1
x uyy + ux∂

−1
x uy) = 0 (81)

whereσ 2 = −1 for the mKP-I equation andσ 2 = 1 for the mKP-II equation. This equation
is the compatibility condition of the following two auxiliary linear problems [20]:

L1χ = (σD2 +D2
1 + σuD1)χ = 0 (82)

L2χ = (D3 + 4D3
1 + 6σuD2

1 + (3σux + 3
2σ

2u2 − 3σ 2(∂−1
x uy))D1)χ = 0 (83)

where the long derivatives

D1 = ∂x +
i

λ
D2 = ∂y +

1

σ

1

λ2
D3 = ∂t +

4i

λ3
.

The solutionu(x, y, t) of the mKP equation can be expressed through the coefficientχ̃0 (10)
of the Taylor expansion ofχ near the pointλ = 0 [20]:

u(x, y, t) = −2σ−1∂x ln χ̃0. (84)

The functionF(λ) for the mKP equation is given by the formula [20]

F(λ) = i
x − x0

λ
+
y − y0

σλ2
+

4it

λ3
. (85)

The reality condition for the solutionsu(x, y, t) of the mKP equation gives the following
restrictions on the kernelR0(µ,µ; λ, λ) of the∂-problem (1) [20]:

R0(µ,µ; λ, λ)µ = R0(λ, λ;µ,µ)λ (86)

for the mKP-I (σ 2 = i) and

R0(µ,µ; λ, λ) = R0(−µ,−µ;−λ,−λ) (87)

for the mKP-II (σ 2 = 1) cases.
By the use of (23) and (84) and taking into account the reality conditions (86) and (87)

one can obtain the following general determinant formulae for the rational multipole solutions
of the mKP equation:

u = 4
∂

∂x
arg(detA) (88)

for the mKP-I case (σ = i) and

u = −2
∂

∂x
ln

(
det

A + iC

A

)
(89)

for the mKP-II case (σ = 1).
Now let us calculate some specific examples of multiple pole solutions of the mKP

equation.
To the reality condition (86) for the mKP-I equation satisfies, for example, the following

kernelR0 of the ∂̄-dressing problem (1) with derivatives of delta-functions:

R0(µ,µ; λ, λ) = π

2

∑
p

apλδ
(kp)(µ− λp)δ(kp)(λ− λp). (90)

In the simplest case of one term in the sum (90),

R0(µ,µ; λ, λ) = π

2
a1λδ

(k)(µ− λ1)δ
(k)(λ− λ1). (91)
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For the matrixA given by (20) one easily obtains, by the use of (91), the expression

A = 1 + ia1 eF(λ1)−F(λ1)D
(+)k
λ1
D
(−)k
λ1

λ1

λ1− λ1
. (92)

The matrixC given by (22) has the form

C = a1 eF(λ1)−F(λ1)(D
(+)k
λ1
· 1)(D(−)k

λ1
· 1). (93)

For further calculations the following relations will be useful, involving the derivatives
D(+)
µ andD(−)

λ given by (37):

D
(−)k
λ

λ

µ− λ = −(D
(−)k
λ1
· 1) +

k∑
n=0

(D
(−)n
λ · 1) µ

(µ− λ)k+1−n (94)

and

D(+)k
µ D

(−)k
λ

λ

µ− λ =
k∑

m=0

k−1∑
n=0

k!

n!
Cmk (−1)k−m(D(−)n

λ · 1)(D(+)m
µ · 1)

× (2k − n−m− 1)!

(k − n− 1)!(µ− λ)2k−n−m

+λ
k∑
n=0

k∑
m=0

k!

n!
Cmk (−1)k−m(D(−)n

λ · 1)(D(+)m
µ · 1)

× (2k − n−m)!
(k − n)!(µ− λ)2k−n−m+1

. (95)

Due to (85) it is convenient to introduce the quantities

1F := F(λ)− F(λ) = −2λI
|λ|2

(
x̃ − 2λR
|λ|2 ỹ +

8λ2
I

|λ|4 t
)

(96)

and

X(λ) := iF ′(λ) = 1

λ2

(
x − x0 − 2

λ
(y − y0) +

12

λ2
t

)
= 1

λ2

(
x̃ − 2λR
|λ|2 ỹ + i

2λI
|λ|2 ỹ

)
(97)

where

x̃ := x − x0 − 12

|λ|2 t ỹ = y − y0 − 12λR
|λ|2 t.

In the simplest case,k = 1, using (92) and (95) one has from the preceeding formulae

A = 1− a1λ1R

2λ1I

(∣∣∣∣X(λ1) +
λ1

2λ1Rλ1I

∣∣∣∣2 +
1

4

(
1

λ2
1I

− 1

λ2
1R

)
+

i|X(λ1)|2λ1I

λ1R

)
e1F . (98)

Due to (93) for the matrixC one obtains in thek = 1 case

C = a1|X(λ1)|2 e1F . (99)

It is also convenient to introduce the notation

A := P − iQ. (100)

For the solutionu(x, y, t) of the mKP-I equation one then obtains from (84) and (98)

u(x, y, t) = 4
∂

∂x
arg(detA) = −4

∂

∂x
arctg

Q

P
= 4

PxQ− PQx

P 2 +Q2
. (101)
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Here the quantitiesP andQ are defined, due to (98) and (100), by the formulae

P := 1− a1λ1R

2λ1I

(∣∣∣∣X(λ1) +
λ1

2λ1Rλ1I

∣∣∣∣2 +
1

4

(
1

λ2
1I

− 1

λ2
1R

))
e1F

= 1− a1λ1R

2λ1I

(
1

2|λ1|4
(
x̃ − 2λ1R

|λ1|2 ỹ +
λ2

1R − 3λ1Rλ1I

2λ1I

)2

+

(
2λ1I

|λ1|2 ỹ −
λ2

1R − 3λ1Rλ1I

2λ1I

)2

+
1

4

(
1

λ2
1I

− 1

λ2
1R

))
× exp

[
− 2λ1I

|λ1|2
(
x̃ − 2λ1R

|λ1|2 ỹ +
8λ2

1I

|λ1|4 t
)]

(102)

and

Q := a1
|X(λ1)|2

2
e1F = a1

2|λ1|4
((
x̃ − 2λ1R

|λ1|4 ỹ
)2

+
4λ2

1I

|λ1|4 ỹ
2

)
× exp

[
− 2λ1I

|λ1|2
(
x̃ − 2λ1R

|λ1|2 ỹ +
8λ2

1I

|λ1|4 t
)]

(103)

where as previously the following notation is used:

x̃ := x − x0 − 12

|λ1|2 t ỹ = y − y0 − 12λ1R

|λ1|2 t.
The rational-exponential solution of the mKP-I equation obtained is obviously non-singular.

Now let us calculate some examples of pure rational multiple pole solutions of the mKP-I
equation. Let us first consider the kernelR0 of the∂-problem (1) of the type

R0(µ,µ; λ, λ) = π

2

∑
p

apλδ
(kp)(µ− λp)δ(kp)(λ− λp). (104)

Hereap andλp are supposed to be real constants and for this reason such a kernelR0 satisfies
the reality condition (86). For the matrixA given by (20) in the simplest case of one term in
the sum (104),

R0(µ,µ; λ, λ) = π

2
a1λδ

(k)(µ− λ1)δ
(k)(λ− λ1) (105)

one obtains

A = 1 + ia1 Res

(
eF(µ)−F(λ1)

µ− λ1
D(+)k
µ D

(−)k
λ1

λ1

µ− λ1

)∣∣∣∣
µ=λ1

. (106)

By the use of relation (94) matrixA given by (106) can be easily calculated:

A = 1 +
k∑

m=0

k−1∑
m=0

k!

n!
Cmk (−1)k−m

(D
(−)n
λ1
· 1)(D(+)2k−n

λ1
· 1)

(2k − n−m)(k − n− 1)!

+λ1

k∑
m=0

k∑
n=0

k!

n!
Cmk (−1)k−m

(D
(−)n
λ1
· 1)(D(+)2k−n+1

λ1
· 1)

(2k − n−m + 1)(k − n)! . (107)

The sums overm in (107) using (78) can be easily calculated and forA one finally obtains
the expression

A = 1 + ia1
(k!)2

(2k)!

( k−1∑
n=0

Cn2k(D
(−)n
λ1
· 1)(D(+)2k−n

λ1
· 1)

+
λ1

2k + 1

k∑
n=0

Cn2k+1(D
(−)n
λ1
· 1)(D(+)2k+1−n

λ1
· 1)
)
. (108)
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The matrixC given by (22) has the form

C = a1(D
(+)k
λ1
· 1)(D(−)k

λ1
· 1). (109)

Using (108) and (109) one can easily check that the relation

A = A + iC (110)

for A andC given by (108) and (109) is fulfilled. Due to this fact

AI = A− A
2i
= −C

2
AR = A− A

2
= A + i

C

2
. (111)

For the multiple pole solutions of the mKP-I equation one finally finds the general formula
corresponding to the kernelR0 of the type (105):

u(x, y, t) = −4
∂

∂x
Arctg

C/2

A + iC/2
. (112)

For the simplest case of delta functions with derivatives of first order (k = 1) in the kernel
R0 given by (105), calculations with the use of formulae (108)–(111) lead to the following
expression for the multiple pole solution of the mKP-I equation:

u(x, y, t) = −4
∂

∂x
arctg

Q1

P1
(113)

where

Q1 := X2(λ1)

2
P1 := λ1

3

(
X3(λ1) +

1

2
X′′(λ1) +

3

2λ1
X′(λ1)

)
. (114)

After simple calculations one finds

u(x, y, t) = 6

λ3
1

X4(λ1)−X(λ1)X
′′(λ1)− (3/λ1)X(λ1)X

′(λ1)− (6/a1λ1)X(λ1)

(X3(λ1) + 1
2X
′′(λ1) + (3/2λ1)X′(λ1) + (3/a1λ1))2 + (9/4λ2

1)X
4(λ1)

.

(115)

Using the variables

x̃ := x − 20t

λ2
1

− x0 ỹ := y − 16t

λ1
− y0 (116)

one can rewrite this solution in the more explicit form

u(x, y, t) = 6λ1
(x̃ − (2/λ1)ỹ)

4 + 6λ3
1ỹ − (6λ5

1/a1)(x̃ − (2/λ1)ỹ)

((x̃ − (2/λ1)ỹ)3− 3λ1ỹ + (3λ5
1/a1))2 + (9λ2

1/4)(x̃ − (2/λ1)ỹ)4
. (117)

It is evident that this solution has a localized point singularity which corresponds to the zeros
of the variables in the round brackets in the denominator of (117):

ỹ = y − y0 − 16t

λ1
= λ4

1

a1
x̃ = x − x0 − 20t

λ2
1

= 2

λ1
ỹ = 2λ3

1

a1
. (118)

This point singularity moves in the plane (x, y) with velocity(Vx, Vy) = (20/λ2
1, 16/λ1) along

the liney − y0 − (λ4
1/a1) = (4λ1/5)(x − x0 − (2λ3

1/a1)).
It is instructive to study the interaction of the rational multipole solutions of type (117).

For this let us consider a more general kernel than (105), i.e. the kernelR0 given by (104). The
matrixA which corresponds to the kernel (104) has, due to (20), the following form:

Apq = δpq + iδpqap Res

(
eF(µ)−F(λp)

µ− λp D
(+)kp
µ D

(−)kp
λp

λp

µ− λp

)∣∣∣∣
µ=λp

+i(1− δpq)ap eF(λp)−F(λq)D(+)kp
λp

D
(−)kp
λq

1

λp − λq . (119)
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The matrix elements ofApq can be easily calculated by the use of (94). Instead of the matrices
A andC in the case of rational multiple pole solutions it is convenient to use the matricesÃ

andC̃ defined by the relations

Ãpq := e−F(λp)+F(λq)Apq C̃pq := e−F(λp)+F(λq)Cpq. (120)

For brevity let us also introduce the short notation

Xk := X(λk) = iF ′(λk) = (x − x0 − 2λ−1
k (y − y0) + 12λ−2

k t)
1

λ2
k

. (121)

In the simplest case of delta functions with first derivatives (k = 1) in the sum (104), due
to (94), (104) and (118) one obtains the following expressions for the matrices 1 +Ã andC̃:

Ãpq := δpqaq(Pq − iQq) + (1− δpq)(Rpq + iSpq) C̃pq = apXpXq (122)

where

Pp := λp

3

(
X3
p +

1

2
X′′p +

3

2λp
X′(λp)

)
+

1

ap
Qp := 1

2
X2
p (123)

and

Rpq := λpXp + λqXq
(λp − λq)2 Spq := λqXpXq

λp − λq −
λp + λq
(λp − λq)3 . (124)

One can easily check that det(Ã + iC̃) = detA, this means that the reduction (86) is fulfilled
and one can use formula (88) for the solutions of the mKP-I equation. Finally, by the use of
(88) and (119) one finds (in the case of the kernelR0 given by (104) with allkp = 1) for the
rational multiple pole solution of the mKP-I equation

u(x, y, t) = −4
∂

∂x
arctg

det(C̃/2)

det(Ã + iC̃/2)
. (125)

ForXp fixed andXq →∞ (q 6= p) one has approximately from the last formula

u(x, y, t) = −4
∂

∂x
arctg

Qp

Pp
. (126)

This means that formula (125) gives the superposition of simple multiple pole solutions of
type (117) moving in straight lines and interacting elastically with each other.

Let us note in conclusion of this section that via the∂-dressing method one can calculate
the exact multiple pole solutions of the mKP-II equation analogously to the case of mKP-I but
all these solutions are singular.

6. The multiple pole solutions with constant asymptotic values at infinity of the DS
system of equations

The Davey–Stewartson (DS) system of equations has the form [21]

qt + αqξξ − βqηη − 2αq∂−1
η (pq)ξ + 2βq∂−1

ξ (pq)η = 0

pt − αpξξ + βpηη + 2αp∂−1
η (pq)ξ − 2βp∂−1

ξ (pq)η = 0. (127)

Here and below it will be assumed that the space variablesξ , χ and the constantsα andβ
have real values. We will consider the solutionp, q of the DS system (127) with constant
asymptotic values at infinity (p→ ε andq → 1 atξ2 +η2→∞). In this case it is convenient
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to represent the DS system (127) as the compatibility condition of the following two linear
auxiliary problems [22, 23]:

L1χ = (DξDη + Ṽ Dη +U)χ = 0 (128)

L2χ = (Dt + αD2
ξ + βD2

η +W1Dη +W2)χ = 0 (129)

in the form of Manakov’s triad representation

[L1, L2] = (W1η − 2αVξ )L1. (130)

Here the long derivatives are expressed by the formulae [22]

Dξ = ∂ξ + iλ Dη = ∂η − iε

λ
Dt = ∂t + αλ2 +

βε2

λ2
(131)

and the functionsV = −qξ/q, U = −pq andW1,W2 are expressed through the coefficients
χ0 andχ−1 of the Taylor expansions ofχ in the following way [22]:

V = −χ̃0ξ /χ̃0 U = −pq = −ε − iχ−1η (132)

W1 = −2βχ̃0η/χ0 W2 = −2iαχ−1η. (133)

The solutionp, q of the DS system (127) due to (132) can be expressed through the coefficients
χ̃0 andχ−1 ((10) and (11)) of the Taylor expansions of the functionχ by the formulae [22]

p = ε + iχ−1η

χ̃0
q = χ̃0. (134)

The functionF(λ) due to (131) is given for (127) by the expression

F(λ) = i

(
λξ − ε

λ
η

)
+

(
αλ2 +

βε2

λ2

)
t. (135)

Let us also mention the following (2 + 1)-dimensional integrable nonlinear equation:

Ut − Uξξ − 2(UV )ξ = 0

Vtη + Vξξη − 2Uξξ − (V 2)ξη = 0 (136)

which is known as the integrable (2 + 1)-dimensional generalization of the dispersive long
wave (2DGDLW) system [24].

On the introduction of the new dependent variableφ = ln 4U and by appropriate
elimination of another variableV by the formulaV = 1

2(e
−φ∂−1

ξ (eφφt )−φξ ), the system (136)
is reduced to a single equation for theφ-2D sinh–Gordon equation [24]:

(e−φ [eφ(φξη + sinhφ)]ξ )ξ − (e−φ∂−1
ξ (eφ)t )tη + 1

2([e
−φ∂−1

ξ (eφ)t ]
2)ξη = 0. (137)

This is a (2 + 1)-dimensional generalization (non-symmetrical inξ andη) of the sinh–Gordon
(2DGShG) equationφξη + sinhφ = 0. Let us note that equation (137) coincides with the
corresponding 2D sinh–Gordon equation of the paper of Boitiet al [24] under the following
identification of independent variables:ξ with x, η with t and t with y. The 2DGDLW
system (136) and consequently the equation (137) are the compatibility conditions of the
auxiliary linear problems (128) and (129) at particular values of parametersα = 1 andβ = 0,
and they have the same Manakov’s triad operator representation (130) as the DS system of
equations (127). The solutions of these equations (136) and (137) with constant asymptotic
values ofU(ξ, η, t) at infinity (U → −ε at ξ2 + η2 → ∞) can be expressed through the
coefficientsχ̃0 andχ−1 ((10) and (11)) of the Taylor expansions of the eigenfunctionχ of the
corresponding auxiliary linear problems by the formulae [22]

V = − ˜χ0ξ /χ̃0 U = −ε − iχ−1η φ = ln 4U. (138)
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The functionF(λ) is given in this case by the expression

F(λ) := i
(
λξ − ε

λ
η
)

+ λ2t. (139)

The condition of reality of the fieldsq andp in (127) andU(ξ, η, t) andV (ξ, η, t) in (136)
leads to the following restriction on the kernelR0 of the corresponding∂-problem [22]:

R0(µ,µ; λ, λ) = R0(−µ,−µ;−λ,−λ). (140)

Now let us calculate some specific examples of multiple pole solutions of the DS system
of equations (127) with realα andβ, and as particular cases of the solutions of the 2DGDLW
system (136) and the 2DGShG equation (137) withα = 1 andβ = 0 in the corresponding
formulae. Using (20)–(24) and (134), it can be easily proved thatq(ξ, η, t), p(ξ, η, t) and
consequentlyV (ξ, η, t), U(ξ, η, t) andφ(ξ, η, t) can be expressed in the following way:

q = det
A + iC

A
p = ε det

A− iD

A
(141)

V = − ∂

∂ξ
ln det

A + iC

A
U = −ε det

A− iD

A
det

A + iC

A
φ = ln 4U (142)

where the factorization ofU on the multipliersp, q is explicitly shown with the use of matrix
D:

Dpq :=
N1p,N2q∑
k,m=0

∫ ∫
C

dλR dλI

×
∫ ∫

C

dµR dµI
1

µ
eF(µ)−F(λ)r(p)k (µ)l(q)m (λ)δ(k)(µ− νp)δ(m)(λ− τq). (143)

For example, the following kernelR0 of the ∂-dressing problem (1) satisfies the reality
condition (140):

R0(µ,µ; λ, λ) = π

2
aδ(k)(µ− iα1)δ

(k)(λ− iβ1) (144)

with real constantsa, α1 andβ1. For such a kernel the matricesA, C andD due to (20), (22),
(39) and (143) have the form

A = 1 + ia e1F
k∑
n=0

k∑
m=0

CnkC
m
k (2k − n−m)!(−1)k−m

(D
(−)n
iβ1
· 1)(D(+)m

iα1
· 1)

(iα1− iβ1)2k+1−n−m (145)

C = a e1F (D(+)k
iα1
· 1)

(
D
(−)k
iβ1
· 1

iβ1

)
D = a e1F

(
D
(+)k
iα1
· 1

iα1

)
(D

(−)k
iβ1
· 1). (146)

Here and below it is convenient to use the notation

1F := F(iα1)− F(iβ1) = −(α1− β1)ξ − ε
(

1

α1
− 1

β1

)
η

−
(
α(α2

1 − β2
1)) + βε2

(
1

α2
1

− 1

β2
1

))
t (147)

and

F ′(iα1) := iX(α1) = i

(
ξ − ε

α2
1

η + 2

(
αα1 +

βε2

α3
1

)
t

)
. (148)

In the particular casek = 1, by the use of (141), (142) and (145)–(148) one obtains the
following rational-exponential multiple pole solutions of the DS system (127) with realα and
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β and the solutions of the 2DGDLW (136) and the 2DGShG (137) equations withα = 1 and
β = 0:

p = ε
(

1− a e1FX(β1)(X(α1) + (1/α1))

α1A

)
q = 1 +

a e1FX(α1)(X(β1)− (1/β1))

β1A

(149)

and

V = ∂

∂ξ
ln q U = −pq φ = ln 4U. (150)

Here the matrixA in thek = 1 case is given by the formula

A = 1 +
a e1F

α1− β1

((
X(α1) +

1

α1− β1

)(
X(β1) +

1

α1− β1

)
+

1

(α1− β1)2

)
. (151)

Evidently the obtained solutions are singular.
In the case of pure rational multiple pole solutions of (127), (136) and (137) one can

choose, for example, the following kernelR0 of the ∂-dressing problem (1) satisfying the
reality condition (140):

R0(µ,µ; λ, λ) = π

2
aδ(k)(µ− iα1)δ

(k)(λ− iα1) (152)

with real constantsa andα1. For such a kernel the matricesA, C andC̃ have, due to (20),
(22), (39), (78) and (143), the form

A = 1 + ia
k∑
n=0

k∑
m=0

CnkC
m
k (2k − n−m)!(−1)k−m Res

(D(−)n
µ · 1)(D(+)m

iα1
· 1)

(µ− iα1)2k+1−n−m

∣∣∣∣
µ=iα1

= 1 + ia(k!)2
k∑
n=0

(D
(−)n
iα1
· 1)(D(+)2k+1−n

iα1
· 1)

(2k + 1− n)! (153)

C = a(D(+)k
iα1
· 1)

(
D
(−)k
iα1
· 1

iα1

)
D = a

(
D
(+)k
iα1
· 1

iα1

)
(D

(−)k
iα1
· 1). (154)

In the particular casek = 1, by the use of (141), (142) and (153), (154) one obtains the following
solutions of the DS system (127) with realα andβ and the solutions of the 2DGDLW (136)
and 2DGShG (137) equations withα = 1 andβ = 0 in the corresponding formulae:

p = ε
(

1− aX(α1)(X(α1) + (1/α1))

α1A

)
q = 1 +

aX(α1)(X(α1)− (1/α1))

α1A
(155)

and

V = ∂

∂ξ
ln q U = −pq φ = ln 4U. (156)

Here the matrixA in thek = 1 case is given by the formula

A = 1 +
a

6
(X′′(α1)− 2X3(α1)). (157)

Evidently the obtained solutions are singular.
One can perform similar calculations of multiple pole rational solutions for a more

complicated kernelR0 of the∂-problem:

R0(µ,µ, λ, λ) = π

2
a(δ(k)(µ− λ1)δ

(k)(λ− λ1) + δ(k)(µ + λ1)δ
(k)(λ + λ1)). (158)
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For the diagonal matrix elements ofÃ one obtains, due to (20), (120), (135) and (153),

Ã11 = Ã22 = 1 + i(−1)ka1 Res

(
eF(µ)−F(λ1)

µ− λ1
D(+)k
µ D

(−)k
λ1

1

µ− λ1

)∣∣∣∣
µ=λ1

= 1 + ia1(k!)
2

k∑
n=0

(D
(−)n
λ1
· 1)(D(+)2k+1−n

λ1
· 1)

n!(2k + 1− n)! (159)

where one can prove the validity of the first equality in the last equation by the identity

(D
(±)n
λ · 1) = (−1)n(D(±)n

−λ · 1). (160)

For the non-diagonal matrix elements ofÃ one easily obtains, due to (20), (120) and (155),
the following expression:

Ã12 = Ã21 = ia1D
(+)k
λ1
D
(−)k
−λ1

1

λ1 + λ1

= ia1

k∑
n=0

k∑
m=0

CnkC
m
k (2k − n−m)!(−1)k−m

(D
(−)n
−λ1
· 1)(D(+)m

λ1
· 1)

(λ1 + λ1)2k+1−m−n . (161)

For the matrices̃C andD̃ (the matrixD̃ is defined through the matrixD analogously to the
case of the definitioñC throughC by the use of (120)), due to (22), (120) and (143), one
obtains

C̃ =

 a1(D
(+)k
λ1
· 1)

(
D
(−)k
λ1
· 1

λ1

)
−a1(D

(+)k
λ1
· 1)(D(−)k

−λ1
· 1

λ1
)

a1(D
(+)k
−λ1
· 1)

(
D
(−)k
λ1
· 1

λ1

)
−a1(D

(+)k
−λ1
· 1)

(
D
(−)k
−λ1
· 1

λ1

)
 (162)

D̃ =

 a1

(
D
(+)k
λ1
· 1

λ1

)
(D

(−)k
λ1
· 1) a1

(
D
(+)k
λ1
· 1

λ1

)
(D

(−)k
−λ1
· 1)

−a1

(
D
(+)k
−λ1
· 1

λ1

)
(D

(−)k
λ1
· 1) −a1

(
D
(+)k
−λ1
· 1

λ1

)
(D

(−)k
−λ1
· 1)

 . (163)

Then with the use of (159)–(163) one can obtain, by formulae (141) and (142), the
corresponding pure rational multiple pole solutions of the DS system (127) and equations (136)
and (137). These solutions are singular. The study of the structure of singularities of such
solutions may be an interesting problem and will be done elsewhere.
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