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Abstract. The exact multiple pole solutions of several (2 + 1)-dimensional integrable
nonlinear evolution equations, such as the Kadomtsev—Petviashvili equation, the modified
Kadomtsev—Petviashvili equation and the Davey—Stewartson system of equations and others by
the use of th@-dressing method are constructed.

1. Introduction

The problem of investigating multiple pole solutions of integrable nonlinear equations is a
classical one. For the focusing nonlinear $ctinger equation it was considered in [1, 2], for
the modified Korteweg—de Vries equation in [3] and for the sine—Gordon equation in [4, 5].
Recently, in [6, 7] an integrable chiral model in (2+1) dimensions was analysed from this point
of view and in [8] multiple poles for the Kadomtsev—Petviashvili | equation were considered.
In [9] the multiple pole solutions of the Davey—Stewartson (DS-1l) equation with arbitrary
rational localization in the plane were obtained.

There are several known approaches for the construction of multiple pole solutions of
integrable equations. Such solutions can be obtained by the Hirota method, by means of
Fredholm determinants [4] or by the use of the Wronskian scheme [9]. A popular trick
in calculating multiple pole solutions from the known simple pole multisolitons solutions
consists in coalescing of the simple poles [1]. In the frameworks of the IST method the
multiple pole solutions can be obtained by solving the Gelfand—Levitan—Marchenko integral
equations [2, 3, 5] or the singular integral equations of the Riemann—Hilbert problems[1, 8]. A
very convenient perspective for the calculation of multiple pole solutions of (2+1)-dimensional
integrable nonlinear equations is thalressing method of Zakharov and Manakov [10]. Let
us explain what the term multiple pole means in the context of this method.

The basic equation of the-dressing method in the scalar case is the following nonlocal
3-problem for the eigenfunctiop:

W =(x* R)(A, 1) =f/ dr A AV x (W AR, A AL N
C
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which in the case of canonical normalizatign{ 1 atA — o0) is equivalent to the following
singular integral equation:

du A dy — ,
=1+ m DR Y- AL A%
x () // i /Cd/u\ i x (i, W Ro(p, s A/, 1) €

Here only the dependence on spectral variables is shown, the concrete choice of the
kernel Ro(u, z; A, ») and the functionF (1) depend on the concrete integrable nonlinear
equation. The functiory is also the eigenfunction of some auxiliary linear problems (the
integrable nonlinear equation in turn is the compatibility condition of these linear problems)
which define the spacetime dependenceyof The eigenfunctiony (1) may have some
analytic or non-analytic properties on the complex variabldf one chooses for the kernel

Ro the expression in the form of the sum of products of complex delta functions and their
derivatives

Nlp NZ[)

Ro(u, TT; &, %) = Z Y Rl )80 (= )8 (= i)
p  k.m=0

then from the singular integral equation fprone obtains
(p) X(pz)
A =1+ = +. ).
X = Z(x oy =2 )

In this expression fog the term like as;((”)/(k — A,)™ corresponds to the multiple pole of
multiplicity m at the pointh = A,. Such a structure of the functigngives the name multiple
pole to the corresponding solutions: if the Laurent series expansiptigterminates on the
m-pole term then one talks about theepole multiple pole solution of the integrable nonlinear
equation.

Let us remark that the existence of multiple pole terms in the Laurent series expansion of
x is closely connected with the non-self-adjointness of the operator of the first auxiliary linear
(scattering) problem for given a integrable nonlinear equation. The eigenfungtianef the
self-adjoint operators have only simple poles and the solutions of the corresponding integrable
nonlinear equations are simple pole solutions.

Inthe present paper the broad classes of multiple pole solutions of such (2+1)-dimensional
integrable nonlinear equations, such as the Kadomtsev—Petviashvili (KP) equation, the
modified Kadomtsev—Petviashvili (mKP) equation, the Davey—Stewartson (DS) system of
equations, the two-dimensional generalization of a dispersive long wave (2DGDLW) system
and the two-dimensional generalization of the sinh—Gordon (2DGShG) equation, are calculated
by the use of thé-dressing method [10]. Amongst these solutions are rational-exponential and
also pure rational solutions, some of which are non-singular, the specific behaviour of these
solutions depending on their spectral characterization and on the type of integrable nonlinear
equation.

Note in conclusion that the calculations of multiple pole solutions viadtuessing
method are very simple and more effective then the calculations based, for example, on the
trick of coalescing simple poles or on the use of the nonlocal Riemann—Hilbert problem. By the
use of thed-dressing method one can also calculate the multiple pole solutions of other (2 +1)-
dimensional integrable nonlinear equations, such as the DS-I, DS-Il and Veselov—Novikov
equations and so on. This will be done in a separate paper.
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2. The basic ingredients of thed-dressing method

It is well known that thed-dressing method is a very powerful method for the solution of
integrable nonlinear evolution equations. This method was discovered by Zakharov and
Manakov [10] (see also [11-16]) and has now been applied successfully to (1 + 1)-dimensional
and also to (2 + 1)-dimensional integrable nonlinear evolution equations. 3-Hhessing
method allows one to construct Lax pairs, to solve initial and boundary value problems, to
calculate the broad classes of exact solutions and so on.
Let us recall the basic ingredients of thelressing method [10] for the (2+1)-dimensional
case. At first one postulates the nonloggiroblem:
dx (A, A)
I
For the sake of definiteness we restrict our attention to the case of the scalar complex-valued
functionsy and R with the canonical normalization for (x — 1, asA — o0). We also
assume that the problem (1) is uniquely solvable. Equation (1) defines the behaviour of the
wavefunctiony in the spectral or momentum space.
Then one introduces the dependence of the kekreehd consequently the functignon
the space and time variablesn, ¢:

=(X*R)(,\,X)=// dr A dr x (W AR, M AL A). (1)
C

dR — - -
e 11()"/)R()‘-,7 )\-/a )‘-a )\'5 Sa n, t) - R()"/a )‘-/7 )\-7 )‘-7 E’ n, I)Il()\')

&

2—: = LW)RW, N h, k6., 0) — RO, A A, h€,m, 1) (1)

aa—f = BARMW, Vs, A &, m,0) = RV, Vs h A &, 0)13(1) @)
i.e.

ROV, N0, 0 E,m, 1) = Ro(M, M5 A, L) exp(F (M) — F (L)) 3)
where

F) =LA (E — &) + (M) (1 — no) + l3(A) (1 — 1o). 4)

Herel; (1) (i = 1, 2, 3) are some multinomial or rational functionsafthe choice of these
functions depending on the specific integrable equation. The role of the vargableswill
be played by the usual space and time variables ¢ or their combinationg = x + oy,

n = x — oy with 62 = £1. By introducing the ‘long’ derivatives

Ds = 3 + I1()) D, = 3, + () D, = 9, + I3(\) (5)
the dependence @& oné&, i, t can be expressed in the form

[De, R]=0 [D,,R]=0 [D;, R] =0. (6)
By the use of derivatives (5) one can then construct linear operators

L= Zu,mn(s, n. )DL D} D} (7)
which satisfy the condition

d
[2.1]-o0 ®

of the absence of singularities an For such operators the functionL y obeys the same
d-equation as the functiog. If there are several operataks of this type, then by virtue of
the unique solvability of (1) one hds y = 0.
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The solution of the)-problem (1) with the canonical normalizatigg = 1 is equivalent
to the solution of the following singular integral equation:

dx' A dy
X)) =1+ // 2OV — // die A diE x (i, T8 Ro(u, i A, &) €00 =F0, 9)

From (9) one obtains the following for the coefficiepgsand x_; of the series expansion of
x near the pointg. = 0andi = oo (x = o+ xar +---andy = xo+ (x_1)/A +---):

- dia A dr B B o N
fo=1 +// 2TiA // du A diz x (i, 10) Ro(pe, 25 A, 1) €807 FX) (10)
c c
dr A di ~
- // 2ri // du A diz x (1, 0 Ro(p, &; A, &) e W=F® (11)
¢ c

whereF (1) is given by formula (4).
For the construction of multipole solutions in the present paper we consider the following
kernel Ry of the 9-problem:

N1, Nop

Ro(u. T0: . 3) = Z Z Z T GOLD (80 (1 —0,)8" (h — 1,). (12)

Herevy, vy, ... and 1y, 1o, ... are two sets of isolated points distinct from the origin and
8® (1 — 1,) is the designation of theth derivative of the complex delta function:

8k
8O (u—np) = ko= 2 (13)

For such a delta-form kernel, Which is the sum of products of delta functions and their
derivatives, one can construct in closed determinant form the multipole solutions of all known
(2 + 1)-dimensional integrable nonlinear equations.

For the kerneR, of form (12) one has from (10) and (11) the following for the coefficients
Xo, x—1 of the Taylor expansions of:

Nlp Nzp

X0=1+iz // d)\.Rd)\.I—

p  km=0

x / / dier dyar x (. " LY ()8 (1 = )8 (o — 7,) €700
c
(14)

Nlp Nzp

,1=—iz // dig di;
k,m=0

P
x / / dier dpar x (1. R (I ()8 (o = v,)8 (G — ) €001,
C
(15)
Introducing the quantitieX ,, andY,, by the formulae

Nlp Nlg

Xpq // drg di;
k,m=0

x f / duk s x (s P LD )P (1 — v,)8™ (. — 1) €FW=F®
C
(16)
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Nlp,NQq 1
Ypgi= Y // dig i
k,m=0 C

x / / dier dpar x (e, R (I I8S (1 = v)8™ (1 — 7,) €00
c

17)
one obtains from the integral equation (9) the following algebraic systems of equations:
D ApXe =By (18)
Z ApsYsqg = Cpq (19)
where
Nlp,qu
Apg =8pg+i Y f/ drg dr,
k,m=0 c
el w—re
x / / dr dptr —————r " L )8 (1 = v)8™ (k= 7,) (20)
c n—=
NlpsNZq
Bpgi= // dig dr,
k,m=0 C
x / / dpr dpg € OTFREP GOID )P (11— v,)8™ (0 — 74) (21)
C
Nll,,Ngq
Cpq = Z // d)\R d)\[
k,m=0 c

1
x / / dg dpty 5 €7 ORL D 18P (o = v)0 ™ G — 7). (22)
C

By the use of solutionX ,, andY,,, of equations (18) and (19) the coefficieftsandy_, can
be expressed in the following way:

: _C C
Ho=1+ITry =1+iTr— = det<1+ 'Z) (23)

. . B
oa=—iTrX = —iTr—. (24)

One can usually express the solutions of such (2 + 1)-dimensional integrable nonlinear
equations as the KP, mKP and DS equations and so on through the coeffjgjemtd x_;
of the series expansion of the eigenfunctjpnSo formulae (20)—(24) are very important for
the calculations of exact multiple pole solutions of these equations. In order to satisfy some
reductions (for example, the reality condition or others) on the solutions, one must impose
further restrictions on the kerndl, of the 3-dressing problem (1). This will be done in the
following sections where specific integrable nonlinear equations will be considered.

3. The rational-exponential multiple pole solutions of the KP equation

The famous KP equation has the form

Up + Uyyy + Ouu, + 3023;1uyy =0 (25)
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whereo? = +1,0 = i for the KP-1 equation ang = 1 for the KP-Il equation. This equation
is the compatibility condition for the following two linear problems [10]
Lix = (oDy+ D +u)x =0 (26)
Lox = (D5+4D3 +6uDy +3u, — 30 (3 u,)x =0 (27)

where the long derivatives al@; = 9, +ix, Dy = 9, + (1/0)A%, D3 = 9, + 4ir3.
The reconstruction formula for the solutiomér, y, 1) has the form [10]

u=—2idx-1(x, y, 1) (28)

wherey_1 is the coefficient undex— in the Taylor expansion of the functignnear the point
A = oo which is given by formula (11). For the KP equation the functio@.) has the form
[10]

F(A) = ir(x — xo) + ;kz(y — yo) + 4ix3t. (29)

The reality condition for the soluti_ons(x, Y, 1) of the KP equation gives the following
restrictions on the kernéto (., it; A, A) of the d-problem (1):

Ro(, T; A, &) = Ro(h, A3 T, 1) (30)
for the KP-I @2 = —1) and

for the KP-Il (¢2 = 1) cases.
From formulae (24) and (28) one obtains for the multiple pole solutions of the KP equation

. B
u=—2i0x_1= —ZBXTrZ. (32)

However, from (20), (21) and (29) one has for the magtithe following expression through

the matrixA: B = —3,A. Hence by the use of the well known formula(Tk/A)d, A) =

a9, In(detA) we obtain for the multiple pole solutions of the KP equation the general determinant
formula

u = 202 In(detA). (33)

Now let us calculate specific examples of rational-exponential multiple pole solutions of the
KP equation.

The reality condition (30) of the KP-I equation satisfies, for example, the following kernel
Ro of the d-dressing problem (1) with derivatives of delta functions:

x _
Ro=7 ;a,,aw — 284 (0= 1), (34)

Herea, (p = 1,2, ..., N) are some real constants ahgare arbitrary non-negative integer
numbers. Let us perform the detailed calculations of muléptel-pole solutions of the KP-I
equation which correspond to one term in the sum (34):

Ro = %al(s(")w — 8P = 1), (35)

For the matrixA in (20) one easily obtains the expression

. T _ 1
A= 1+ iageF-Fon ponpn_ 1 (36)
1 A — A
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Here, for convenience, the differential operatDéé) ande;) are introduced by the following
relations:

Gl
D f () = &0 2 @£ ) = 1) + F o) f o)

D g() ="M (e*‘“g(x» =g’ — F (Mg (37)
One can easily obtain useful formulae with these derivatives:
1 k(D" k! (=D (D -1
) kD D D<+>k _ Z (D™ ) (38)
w— A prd n! (M _ )L)k—n+l n! ('u )\)k —n+l
and
(D;7" - DD - 1)
Dk (kL m 0 )
Dl(l )kD)» ZO Z Ck Ck (Zk —-n- )I( 1)k (n — )\)Zkﬂf—m—n (39)
Using (36), (38) and (39) one obtains for the mattiin (20) the expression
F () —F () D" .1 (D™ . 1)
A:l_“le—Zchc;"(zk—n— T M e (40)

2haq =0 m=0 ()“1 - Al)kin (Ag — Ak

Here and below; = A1z +iXy;. For the quantityA F := F (k1) — F (A1), by the use of (29)
one has for the KP-I case (= i):

AF = 21, (x — xo — 2h1g(y — yo) — 4(AF; — aTp)0). (41)
It is convenient to also introduce the quantiy), which by definition has the form
X(\) = —iF'(\) = x —x0 — 2h(y — yo) + 122%¢. (42)

For the solution«(x, y, t) of the KP-1 equation one obtains from (33), (36), (39) and (40) the
expression

82 aleAF
v, )=2— xIn|1-
Uy, ) =255 ( 2011

(D( 1y (D@m.l) >

X CIC"(2k —n —m)! (43)
Zﬂmz e (g — 2= (g — Ak
Due to definitions (37) and to formula (42) one obtains the useful relation
(D)1 =D 1). (44)

Using (44) one can conclude that the double sum in (43) has positive values and the solution
u(x, y, t) given by (43) under the conditian /2i;; < 0 is non-singular.

Let us consider particular cases of the general formula (43) obtained.foy, t). For
k = 0 one obtains from (43) the well known formula for the line soliton of the KP-I equation:

32 a AF
ux,y,t)=2—In{l——¢€ (45)
9x2

For thek = 1 case one obtains from (43) with the use of (37) and (42) the following rational-
exponential multiple pole solution of the KP-I equation:

82 a eAF 1 2 1
HN=2—In{1- - + ' 40
u@x, y,1) =223 ( 2h1s H ) 20y 4?@1}> o

It is evident that this solution under the conditi@iy2)1; < 0 is non-singular.




376 V G Dubrovsky

Let us rewrite expression (46) for the solutio¢x, y, ) in a more explicit form:

- L1 \2 ) 1
oy, 1) =2] 202, @ PuELeXo | [(F oy = ) 42 §2
M(x y ) { 17 5 ” 7 4)\‘51
2 2
+ X+ Ly 42,72 - iz o 2u 82X 4 (g _ 1
2)\'1, 4)Lll 2)\.1]
112
02, Y2+ — . 47
1 4)&1 } 47

Here
X 1= x —x0 — 12003, + A2))t — 20 (y — yo — 1201x1)
- —2X
Y i=y—yo— 12u1xt g PuXo . “
aiy

This simplest rational-exponential solution of type (47) of the KP-1 equation was obtained for
the first time in the book by Matveev and Salle [17].

For thek = 2 case one can easily obtain from (43) with the use of (37) and (42) the
following rational-exponential multiple pole solution of the KP-I equation:
2

92 a erF _ X (A1) 1
,y,)=2—1In(1— X%(0y) —iX' (M) — —2 + ——
u(x,y, 1) 912 ( o H (A1) (A1) o 22,
112 1
+—|X (A1) — — +—}> 48
%1 ' A1r 4)“111 (48)

It is evident that this solution under the conditi@y2),; < 0 is also non-singular.

For the more general kerng} of the form (34) the calculations can be performed without
difficulties. The solutions of the KP-I equation are given in this case by (33), where the matrix
A has the form

1 a. eFGp)—F(y)
R il U e w
p q p q
ky kg (D)(L;)m . 1) (D)(i)n . 1)
X n m + _ _ | I’_ S q .
n;)n;)Ckpckq (kI’ k‘i n m) ()‘*q _ )\p)k”_n ()\p _ )Lq)kq—m
Under some choice of constants andA, these solutions can be non-singular.

Now let us consider another simple kermgl of the 3-dressing problem (1). This kernel
also contains delta functions with derivatives, it satisfies the reality condition (30) for the KP-I
equation and has the form

_ ; F(Oo)—F(hy) 7y (Mkp 7 (DK
Apg =8pg tia, €7 “D—"D;

(49)

Ro = Z(@8(n = 1)8% 0. = o) + @™ (u = K030 = ). (50)
The matrixA (20) for this kernel has the following expression:
vk AF (kL el
1+ |(—1) ai € D)tl e la]—
A= )‘-:ZII.- - )"1 )xl — )\1 1 (51)
ia et DD~ 1+i(-Draer D ———
M oAl — A M Al — A1

where, due to (40),
AF = F(a) — F(h1) = 201 (x — X0 — 2h1r (y — Yo) — 403, — 3hip)0).
The matrix elements ol in (51) can be calculated by use of formulae (38) and (39).



Thed-dressing method 377

After simple calculations using (38), (39), (41), (42) and (51) one obtains for the matrix
Ainthek =1 case

. B 1 _
149 X)) — — | erF i eAr
g 2h11 201
A=l & 17 1 ia 1 (52)
1 AF 1 F
i— XA+ —| +—1eM 1—-—(X(h)—=— )€
2)»11{ 0 4A§,} 2/\1,( (A1) 2A1)
For the solution:(x, y, t) of the KP-I equation one finally has from (33) and (52)
92 |as|? 17 1
, v, ) =2—1In X))+ —| +— 1 e?Ar
e,y 1) = 25 ( %{ )+ 5 %}
NP X (A1) — L) err i (53)
2011 YT 2 .

It is evident that this solution is non-singular.

The calculations of multiple pole solutions of the KP-II equation can be performed
analogously to the case of KP-I, but all these solutions are singular. In the KP-Il case, for
example, the following kerneR, of the 3-dressing problem (1) corresponds to the reality
condition (31):

Ro = Za18® (1 = 10)6® 0. + ). (54)
Herea; is a real constant. The matrikin (20) has in this case the form
A =1+ glion-Feiojg pokpok L (55)
Iz A —A ) )
pn=log,A=—lay
In the simplest casé (= 1) in (54) one has from (55) fo4
a 1 1 1) oo Fei
A=1+_—=(X(@)+=— | X(—ar) + — | + - t el F-la), 56
| (0 ) (o0 5 ) ) =)
Here X («) is defined as follows:
X () := —iF'(ia) = x — xo + 2a(y — yo) — 12?1 (57)

For the multiple pole rational-exponential solutiofx, y, ¢) of the KP-Il equation one obtains
from (33) the expression

92 ap 1 1
y,H)=2—In{1+—1(X +— | X(—ap) + —
u(x, y, 1) 552 ( 2a1{< (1) 20:1)( (—a1) 2a1>

+i2}eF(ia1)—F(—ia1)>. (58)
40[1

A more explicit form of this solution is as follows:

8a3 . 1\2 1 1\2
e e () R ) R e B
1

201 poirsadny 4 (=4 L ’ 22, LV
X —eZ“ 1+ x+2— —40[1_)7 +W . (59)

ax o1 1

Herex = x — 12aft — X0,y = y — yo. Itis evident that this solution is singular.
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4. The rational multiple pole solutions of the KP equation

By thed-dressing method the rational multiple pole solutions of integrable nonlinear equations
can also easily be constructed. Let us calculate some specific examples of rational multiple
pole solutions of the KP equation. For example, the following keRwedf the 9-dressing
problem (1) satisfies the reality condition (30) of the KP-I equation

Ro = % Y (@8 = 2)8% 0 = 1) + @84 (u = 2,)8(0 = 1)), (60)
)4

Let us perform the detailed calculations of rational solutions for the ké&kgiglith one term
in the sum (60):

Ro = Z(@8(n = 2)8% 0. = o) + @8 ® (1 = K3 . — ). (61)
The matrixA given by (20) has for such a kernel the form:
) efw-FGy 1
1+i(=Dfay Res( D" )
A= M= H—2A1 u=h1

iag eF CD—F(h) D(:)kDi_)k_ 1
M YA
eF (:1)—=F ()
A1 — M
eF(M)—i(A) D(i)k_l )
A=A M —A) o
In deriving the expressions for diagonal elements of the matrike following important
identity can be used:

/ f dyur A / f Ak diy (i — W8 — A )SG— Ap) = xo.  (63)
C C

This relation is valid for all integer numbené.
Using (62) and (63) one can easily calculate the matrix elemeptof matrix A. One
has for the diagonal elements

ia1
(62)

1+i(—D*ag Re5<

k
k!
_ : k (—)n . (H)k+1l—n .
A =1+i(-1 alzo mEr 1o P D@y D
(=D
=1- |%(D§l LR (64)
: k!

A =1-i(-1a (D2 (D 1y

—nl(k+1—n)!

_ i(_l)k (Hk+1
=1+ (D" 1. (65)
In obtaining these expressions féf; and A, the simple identity
(D + DY Ly =1 (66)

is very useful. For the non-diagonal elemeiat due to (39) one derives the expression

_ - k k (=)n . D(:)m 1
Ao = _ﬂ eF()Ll)*F(}Ll) Z Z C,?C;:L(Zk —n—m)! (DM 1 ( e )

— — . 67
2 n=0 m=0 (A — A (A — Ag)k—m (67)
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Due to relation (44) itis evident that;; = A», and the double sum in (67) has positive values.
Finally, due to (64), (65) and (67) one finds for rational multiple pole solutions of the KP-I
equation the following expression corresponding to the kekgelf the type (61):

(i IDF e o[
u(x,y,t):Zﬁ In (‘1— (DA1 )

k+1
2 G D"y (DY)
+@ > Crer 2k —n—m)! B D T ) (68)
AT o (A — A% (g — Ak

Evidently, the obtained rational multiple pole solution is non-singular.
Let us consider particular cases of the obtained general formula (68). It is convenient to
express all relations by the use of the functdo(h) which is defined by the relation

(D7 1) = —iF'(h) i= —iX () = —i(x — x0 — 2A(y — yo) + 124%1). (69)
For thek = 0 case one has from (68), taking into account (69),
9° |az|?
) =2—1In( |11 +a1 X )2+ —— ). 70
u(x, y, 1) 5.2 <| arX (11| 4%1) (70)

This is the well known formula for the 1-lump solution of the KP-I equation. Fef 1 one
obtains from (68), with the use of (69), the solution
92 27 1 2
v, ) =2—In( | X2 +iX' () + —| + > +— ). 71
u(x, y, 1) 552 (’ (A1) (21) AR 4)&11) (71)

1
X (A1) — 2
I

This is the well known non-singular solution of the KP-I equation which has been obtained
in [18] and reproduced via IST (inverse scattering transform method) based on the non-local
Riemann—Hilbert problem in the paper of Ablowitz and Villaroel [8]. Other particular cases of
the general formula (68) can be obtained without difficulty, for example the following solution
corresponds té = 2

2 3

0 3
ux, y, 1) =2—In (| X3 — X" (k) +iX' (A X (k1) + —
ox2 ag

2

9 <‘ o 1
T— | | X () X' (A1) — — X (A1) +
Alr

2 2
4r1, 2M1,

’ + Kl‘l‘,)) (72)

Itis clear that by (68) we have the general formula of this kind of rational multipid-pole
solution of the KP-1 equation. It seems that the calculation of these solutions iaiiessing
method is very simple and more effective than the calculations via IST based on the non-local
Riemann—Hilbert problem or calculations using the trick of coalescing of simple poles.

Let us apply thé-dressing method for the calculations of rational multiple pole solutions
of KP-1, which correspond to another simple ker®glsatisfying the reality condition (30):

1
X (A1) — 2
I

+

T o — _
Ro=7 D (aps® (= 1,)8%) (= 1) + @8 % (u — X,)8% (L = 7). (73)
V4

For the kerneRy with one term in the sum (73),

Ro = %(a18<k> (1 — 2080 (. — ag) + @8 ® (u — 70)s® (. — 21)) (74)
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the matrixA given by (20) has the form
. ef (—=F(.1) 1
N
A= w—= Al w—= A1
w1
Y- M
iy e 00-F ppok L
- HOTR g0 — g
_ eF GD—F() 3 1
A=A M M= A/ g
The non-diagonal matrix elemenb; is given by (67); another non-diagonal matrix element
A1, can be calculated analogously and by using formula (39) one obtains
kK (D" .1 (pHm g
A= o @O0 FOD NS oy 2k —n — m)l—1— By D
2011 (A1 — Ak (Ag — Ak
For the diagonal matrix elements afone obtains by the use of (63) and (75) analogously to
the calculations of (64) and (65)

H=A1
iag ef GD=F () D(:)kD)(\
A1

(75)

(76)

n=0 m=0

k (Dil—)n . 1)(D§:)2k+l—n . 1)

A=Az = 1+iag(k")? 77
11 22 lay (k) ; W2k + 1= )l (77)
In deriving the last formula the well known sum with binomial coefficients
k
=" kl(m —1)!
Z cr (-1 _ (m—1) (78)
m+n (k +m)!

n=0
was very useful.
Finally, due to (33) and (75)—(77) one finds for multiple pole rational solutions of the KP-I
equation the following general formula corresponding to the keRgelf the type (74):

82 k (D)(\—)n . 1)(D)(L+)2k+1—n . 1) 2
v, 1) =2—In (|1 +ik"? d L
i, y. 1) =255 (’ (k) ; (2 +1—n)!
2/ & D"y (DM
+@( Y CrCr 2k —n —m)! e )
4\ 52 (A — A% (g — Ak

k (D" 1) (pa
><< > Crer 2k —n —m)l—* By D )) (79)

w20 (A = Ak~ (kg = Ak
The double sums in the two round brackets of the last formula due to (44) have positive values
and the obtained solution is evidently non-singular.
Let us consider the particular cases of the obtained general formula (79). An=the
case the multiple pole rational solution of the KP-I equation has the form
6
2X3(h) + X" (M) — —
ax
X2(h) — 5— X2(h) + 5—

92 2
u(x,y,t) =2 In(
2 2
1 1
i +— ). 80
2X1y 4A§,>< 2)1; 4A§,>> (80)

ax2
v (
M

This solution has been obtained in [8] by Ablowitz and Villaroel via IST based on the non-local
Riemann—Hilbert problem. By (79) we have the general formula of such kind of solution; it
seems that the calculations by the use of dhdressing method are much simpler and they
directly lead to the general formulae corresponding to the kernels of-fr@blem with
arbitrary multiplicity of the poles in the eigenfunctign

1 1
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5. The multiple pole solutions of the mKP equation
The mKP equation has the form [19]

U + Uspry —302(%u2ux —8;1uyy+ux8;1uy) =0 (81)

whereo? = —1 for the mKP-1 equation and? = 1 for the mKP-Il equation. This equation
is the compatibility condition of the following two auxiliary linear problems [20]:

Lix = (0D2+Df+auDl)X =0 (82)
Lox = (D3 +4D3 +60uD? + (3ou, + 30%u® — 30%(3;'u,)) D)y =0 (83)
where the long derivatives
D1=3X+I— D2=8y‘|'Ei D3=8,+ﬂ.
A o A2 A3

The solutioru(x, y, ) of the mKP equation can be expressed through the coeffigigfitO)
of the Taylor expansion of near the poink = 0 [20]:

u(x,y, 1) = —20 19, n jo. (84)
The functionF (1) for the mKP equation is given by the formula [20]

x—xo+y—yo+ﬂ.
o A2 A3
The reality condition for the solutions(x, y, z) of the mKP equation gives the following
restrictions on the kernéo(u, w; A, A) of thed-problem (1) [20]:

F\) =i (85)

Ro(T, w; &, M = Ro(h, A; pu, )M (86)
for the mKP-I ¢2 = i) and

for the mKP-Il @2 = 1) cases.

By the use of (23) and (84) and taking into account the reality conditions (86) and (87)
one can obtain the following general determinant formulae for the rational multipole solutions
of the mKP equation:

u= 4iarg(detA) (88)
0x
for the mKP-I cased = i) and
A+i
we—2"1n (det 'C> (89)
0x A

for the mKP-Il cased = 1).

Now let us calculate some specific examples of multiple pole solutions of the mKP
equation.

To the reality condition (86) for the mKP-I equation satisfies, for example, the following
kernel R, of the 3-dressing problem (1) with derivatives of delta-functions:

— T J—
Ro(u, T 2, 3) = = > aphs® (= 3,)8% (L — ). (90)
p

In the simplest case of one term in the sum (90),

Ro(u, T A, 1) = %mm(")(u — 8P — ap). (91)
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For the matrixA given by (20) one easily obtains, by the use of (91), the expression

I e A
A=1+iag e reop®ipor 2 (92)
i

The matrixC given by (22) has the form
C = a0 (D 1D - 1), (93)

For further calculations the following relations will be useful, involving the derivatives
DY andD;” given by (37):

k

DIy =m0 DY 0 D (94

and
A =y
D;+>kD§—>km =22 G ED DT DD D
m=0n=0 """
2k —n—m—1)!
K —n =Dl = pyFnm
k k k!
1 ZO 2% SCEED DT DO - 1)
y 2k —n —m)! . (95)
(k = m)!(u — a2+
Due to (85) it is convenient to introduce the quantities
2

AF:=FQ) — F(\) = —%(x - |2;\—|’§y + %t) (96)
and
X\ =iF'() = A—lz <x — X0 — %(y — yo) + 1-‘3;) = ;12 <x — ﬁ—l’gy + i%y) (97)
where

- 12 . 120

x::x—xo—Wt y:y—yo—WZ.

In the simplest casé, = 1, using (92) and (95) one has from the preceeding formulae

(L e TR A R P
u 2h1rA 11 4\a2, A%, AR
Due to (93) for the matrixC one obtains in thé = 1 case
C =ai|X (M) . (99)
It is also convenient to introduce the notation
A=P—i0Q. (100)
For the solution«(x, y, t) of the mKP-I equation one then obtains from (84) and (98)

Q Q- PO:

9 d
t) = 4—argdetA) = —4—arct =4 101
u(x. y.1) dx o« ) ox o 9p P2+ (2 (101)
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Here the quantitie® and Q are defined, due to (98) and (100), by the formulae
2
P::1_01)~1R< Al +}<i_ 1>>eAF
211 2hphar | 4\A%, A%,

_1_ aiiir < 1 <~ 2M1R . . Afg — 3hagAws )2

X (A1) +

= F_
2h1 \2|Aq)* |)»1|2y 2h1;
2
o( 25 - Me e )
A2 2\ 4\13, 2%,
211 < 2hig . 8A2, )}
X exp| — X — + 102
p[ a2\ T T g (102)
and
XD o a1 (. 2uar.\ 4A§, I
= e = — - +
¢ =mn—y 20\ it ) T e
2h1; ( 2k . 8%, ﬂ
x exp| — X — + t 103
p[ a2\ T T g (103)
where as previously the following notation is used:
- 12 3 12
X=X—X0— — =y—Yo— —>1.
O P YEI T

The rational-exponential solution of the mKP-1 equation obtained is obviously non-singular.
Now let us calculate some examples of pure rational multiple pole solutions of the mKP-I
equation. Let us first consider the kermgl of the 9-problem (1) of the type

_ — b4
Ro(, T 2, %) = 5 > apns® (= 2,)8% (1 — 1) (104)

p
Herea, andi, are supposed to be real constants and for this reason such aRgsatisfies

the reality condition (86). For the matrix given by (20) in the simplest case of one term in
the sum (104),

— T
Ro(, Tt; 1, 2) = Za1h8 ¥ (= 20080 (4 = 22) (105)
one obtains
_ eF (1W—F () A
A=1+ia Res<—D;;>kD§—>k—1> . (106)
m— A1 Yp—h U=A1
By the use of relation (94) matrix given by (106) can be easily calculated:
(DL - DD
_ 1 + C 1 k—m 1
X;Z ¢=D (2k — n—m)(k—n—l)!
(Dif)n ) 1)(D)(\+)2k7n+l 1)
+1 c 1ykm 2 L ) 107
122 ¢=D 2k —n—m+1)k —n) (107)

m=0 n=
The sums over: in (107) using (78) can be easily calculated andfame finally obtains
the expression

1)2
(2k)!

A=l+ia1

<ZC2k(D( (D)

c D7D ). (108)
2k +1
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The matrixC given by (22) has the form

C =ay (DY (DTF ). (109)
Using (108) and (109) one can easily check that the relation
A=A+iC (110)
for A andC given by (108) and (109) is fulfilled. Due to this fact
A—A C A—A .C
AI:T:_E AR:TZA-'-IE (111)

For the multiple pole solutions of the mKP-I equation one finally finds the general formula
corresponding to the kern&}, of the type (105):
iArctgc—/z.
ax A+iC/2
For the simplest case of delta functions with derivatives of first orklet (1) in the kernel
Rp given by (105), calculations with the use of formulae (108)—(111) lead to the following
expression for the multiple pole solution of the mKP-I equation:

u(x, yvt)=_4 (112)

u(x, y, t) = —4iarctg% (113)
0x Pl
where
X2(x1) M (o3 1 3
= Pii=—=|XAM)+=X"0)+—X(1 . 114
01 > 1 3< (A1) > (A1) 2 (1)> (114)

After simple calculations one finds
6 X*(h1) — X()X"(h) — (B/A) X (M) X' (A1) — (6/a1r1) X (A1)

ulx,y, t) = — .
A3 (X3(h) + 3X"(h1) + (3/241) X' (A1) + (3/a1h1))? + (9/423) X4 (A1)
(115)
Using the variables
20¢ 16¢
=X — — — yi=y—— — 11
xxkim Vi=y= 5o (116)
one can rewrite this solution in the more explicit form
¥ — /A9 + 6035 — (6A3 X — (2/A1)y
ux, y.1) = 61 (x = (2/21)y) 1y — (6A1/a1)(x — (2/A1)y) (117)

1 = o o - o .
((F = (2/20)3)% = 3017 + (B3 /ar)? + (RG/HF — (2/20)7)*
It is evident that this solution has a localized point singularity which corresponds to the zeros

of the variables in the round brackets in the denominator of (117):
160 Af

y=17vy — _—_—= — =X—X— —5 =—y=—. 118
V=y—yoo o= Oki == (118)

=

This point singularity moves in the plane, (y) with velocity (V,, V,) = (20/2, 16/11) along
the liney — yo — (A}/a1) = (411/5)(x — x0 — (243/a)).

It is instructive to study the interaction of the rational multipole solutions of type (117).
For this let us consider a more general kernel than (105), i.e. the kgigdlen by (104). The
matrix A which corresponds to the kernel (104) has, due to (20), the following form:

_ eFW=FG,) o B A
Apy = 8pg +18,0a, Res(u_—/\pz),i e Diﬂ)kpu——px,,)
1

(1= 8,)a, e -FOo pMpe 2 (119)
! oAy =y

H=Ap
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The matrix elements of ,, can be easily calculated by the use of (94). Instead of the matrices
A andC in the case of rational multiple pole solutions it is convenient to use the mattices
andC defined by the relations

A . aFOp)+tF(xy) ~ e o FO,p)+F(Ay)
Apy = G4 Cpq i= e PO GIC (120)

For brevity let us also introduce the short notation

- _ 5. 1
Xp = X0 =iF' (M) = (x —x0 — 201 (y — yo) + 124 Zr)p. (121)
k
In the simplest case of delta functions with first derivatives=(1) in the sum (104), due
to (94), (104) and (118) one obtains the following expressions for the matricesadntC:

qu 1= 8pgg(Py —10Q4) + (1= 8,0)(Rpg +1Sp9) Cpq =a,X,X, (122)
where
Ap 1 3 1 1
P X3+IXT+ —X'(x = ZX? 123
. 3( 30t <p>) T 03K (123)
and
A X, +A, X Ao X, X A, + A
Ry = pAp T AgAyg - adpdq _ _PpThq (124)
(hp — 2g)? Ap—hg Oy —2g)3

One can easily check that ddt+iC) = detA, this means that the reduction (86) is fulfilled
and one can use formula (88) for the solutions of the mKP-I equation. Finally, by the use of
(88) and (119) one finds (in the case of the keRgbiven by (104) with alk, = 1) for the
rational multiple pole solution of the mKP-I equation

3 det(C/2
ulx,y,t) = —4—arctgLO. (125)
dx det(A +iC/2)
For X, fixed andX, — oo (¢ # p) one has approximately from the last formula
ad
u(x,y,t) = —4a—arctg& (126)
X

This means that formula (125) gives the superposition of simple multiple pole solutions of
type (117) moving in straight lines and interacting elastically with each other.

Let us note in conclusion of this section that via thdressing method one can calculate
the exact multiple pole solutions of the mKP-Il equation analogously to the case of mKP-1 but
all these solutions are singular.

6. The multiple pole solutions with constant asymptotic values at infinity of the DS
system of equations

The Davey—Stewartson (DS) system of equations has the form [21]
q: + aqss — Bany — 200, (pq)e + 283 (pg), =0
Pi = apse * Bpay + 2apd; (pg)s — 28pd; (pq), = 0. (127)

Here and below it will be assumed that the space variahlesand the constanig and g8
have real values. We will consider the solutipng of the DS system (127) with constant
asymptotic values at infinity( — € andg — 1 até?+ 5?2 — 00). In this case it is convenient
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to represent the DS system (127) as the compatibility condition of the following two linear
auxiliary problems [22, 23]:

Lix = (DgD,+V D,+U)x =0 (128)

Lox = (D; +aDf + BD; + WiD, + Wo)x =0 (129)
in the form of Manakov’s triad representation

[L1, L2] = (Wi, — 20 V) Ly, (130)

Here the long derivatives are expressed by the formulae [22]

. i€ 2 Be?
D5=35+|A Dnzan—x D, =0, +al +7 (131)
and the function = —g;:/q, U = —pg and Wy, W, are expressed through the coefficients
xo and x_, of the Taylor expansions gf in the following way [22]:

V = —Xoe/Xo U=—-pg=—€—ixy, (132)
W1 = —28%oy/x0 Wy = —2iay_1,. (133)

The solutionp, ¢ of the DS system (127) due to (132) can be expressed through the coefficients
Xo andx_; ((10) and (11)) of the Taylor expansions of the functjoby the formulae [22]

e+iy_ -
p=1 X0 7= %o (134)
Xo
The functionF (1) due to (131) is given for (127) by the expression
: € , Pe?

Let us also mention the following (2 + 1)-dimensional integrable nonlinear equation:
U —Ug —2UV): =0
Vig + Veen — 2Uge — (Ve =0 (136)

which is known as the integrable (2 + 1)-dimensional generalization of the dispersive long
wave (2DGDLW) system [24].

On the introduction of the new dependent variable= In4U and by appropriate
elimination of another variabl€ by the formulaV = %(e*‘l’agl(e"’(pt) — %), the system (136)
is reduced to a single equation for tHhe2D sinh—Gordon equation [24]:

(e[ (¢, + sinhg)]e)s — (€720, (€"))ry + 3([e %0 (€7)]%)ey = 0. (137)

Thisis a (2 + 1)-dimensional generalization (non-symmetric&lamdn) of the sinh—Gordon
(2DGShG) equatiom, + sinhg = 0. Let us note that equation (137) coincides with the
corresponding 2D sinh—Gordon equation of the paper of Boidl [24] under the following
identification of independent variableg: with x, n with r and¢ with y. The 2DGDLW
system (136) and consequently the equation (137) are the compatibility conditions of the
auxiliary linear problems (128) and (129) at particular values of parameterg andg = 0,

and they have the same Manakov’s triad operator representation (130) as the DS system of
equations (127). The solutions of these equations (136) and (137) with constant asymptotic
values ofU (&, n, 1) at infinity (U — —e at&2 + n> — oo) can be expressed through the
coefficientsyp andy_; ((10) and (11)) of the Taylor expansions of the eigenfuncjiasf the
corresponding auxiliary linear problems by the formulae [22]

V = —xos/Xo U=—e—ix_1y ¢ =1In4U. (138)
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The functionF (1) is given in this case by the expression
o € 2
FOO) =i (xg x”) + 22, (139)

The condition of reality of the fieldg and p in (127) andU (£, n, 1) andV (£, n, 1) in (136)
leads to the following restriction on the kern@j of the corresponding-problem [22]:

Now let us calculate some specific examples of multiple pole solutions of the DS system
of equations (127) with real andg, and as particular cases of the solutions of the 2DGDLW
system (136) and the 2DGShG equation (137) wite- 1 andg = 0 in the corresponding
formulae. Using (20)—(24) and (134), it can be easily proved dligtn, ¢), p(&, n, t) and
consequently (¢, n, 1), U(&, n, t) andg (&, n, t) can be expressed in the following way:

A+iC A—iD

g = det2! p = edet2— (141)
9 A+iC A—iD A+iC

V = —— Indet = —cdet det =In4 142
oE A U=—e A A ¢ v (142)

where the factorization di on the multipliersp, ¢ is explicitly shown with the use of matrix
D:
Nip,Noy

Dpyi= Y /f drg di;
k,m=0 C

1
x / / Ay ey = €O DR (LD )P (11— v,)8™ (0 — 1), (143)
c 124
For example, the following kernek, of the 3-dressing problem (1) satisfies the reality
condition (140):
Ro(ps, 7 &, A) = %a(s(’” (n —ia)s® (. —iB) (144)

with real constants, «; andg;. For such a kernel the matricds C and D due to (20), (22),
(39) and (143) have the form
(D(—)" A 1)(D<(+)m . 1)

iﬂl lag

k k
A=1+iae?r Z Z CrCM(2k —n —m)! (=D)F

- - 145
n=0 m=0 (|Ol]_ - |ﬂ1)2k+1—n—m ( )
1 1
C=ae*" (DY) 1) (DL — D=ae" (D" =) (D" 1. (146)
oy 1 Iﬂl o1 Ial 1
Here and below it is convenient to use the notation
. . 1 1
AF == F(lay) — F(if1) = —(a1 — B1)§ — ¢ (— - —) n
ar P
2 2 2 1 1
— 0[(0[1 — 181)) +ﬁ€ S T 3 t (147)
a;  Bi
and
2
F'(iay) :=iX (1) = i(é — %n + 2<aa1 + ﬂ%)t) (148)
o7 21

In the particular casé = 1, by the use of (141), (142) and (145)—(148) one obtains the
following rational-exponential multiple pole solutions of the DS system (127) withwraald
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B and the solutions of the 2DGDLW (136) and the 2DGShG (137) equationswittl and
B =0:

L e X (@) (X (B) — (1/B)

B ( a € X (B (X (ay) + (1/a1))) B
p=€|l- g=1
OélA ,BlA
(149)
and
V:%Inq U=—-pg ¢ =1In4U. (150)
Here the matrixA in thek = 1 case is given by the formula
aerf 1 1 1
A=1+ X + X + + . 151
a1 — P (( () Otl—ﬂl) ( (Pv 011—51) (011—,31)2> (15D

Evidently the obtained solutions are singular.

In the case of pure rational multiple pole solutions of (127), (136) and (137) one can
choose, for example, the following kerngh of the -dressing problem (1) satisfying the
reality condition (140):

Ro(ja. 7 3. 7) = a8 (1 = ia)s® (& — i) (152)
with real constanta anda;. For such a kernel the matricels C andC have, due to (20),
(22), (39), (78) and (143), the form
(D(*)n . 1)(Di(;1)m . 1)

ko k
A=1+iay Y CiC'(2k —n—m)(—)* " Res (;: R

n=0 m=0 p=iay
k (DA(i)n . l)(Dﬁ+)2k+lfn . 1)
=1 +ia(k!)? o o (153)
; 2k +1—n)
1 1
(H)k (—)k (Hk (=)k
C=a(Dy" 1) (Dial : E) D=a (Di; : E) (D" D). (154)

Inthe particular case = 1, by the use of (141), (142) and (153), (154) one obtains the following
solutions of the DS system (127) with reabnd 8 and the solutions of the 2DGDLW (136)
and 2DGShG (137) equations with= 1 andg = 0 in the corresponding formulae:

X X + (1 X X -1
p—e (1 _aX (o) (X (ag) +( /al))) g=1+° (a1) (X (1) — (/a1)) (155)
a1 A 1A
and
V:%Inq U=—-pgq ¢ =1In4U. (156)
Here the matrixA in thek = 1 case is given by the formula
A=1+ %(X”(al) —2X3(ay)). (157)

Evidently the obtained solutions are singular.
One can perform similar calculations of multiple pole rational solutions for a more
complicated kerneR, of the d-problem:

Ro(u, 70, A, &) = %0(5(")(# =280 (L — 21) + 80 (u + 18P (A + 11)). (158)
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For the diagonal matrix elements afone obtains, due to (20), (120), (135) and (153),

~ - . ef (W—=F(.1) . 1
Ajn=Ap=1+ I(—l)kal Re'{—Df:)kD)(\_) —)
W — A1 Yop—Ag w=h1
k (=)n (+)2k+1—n
. (D;,” - (D -1
— 1h2 A A1
1+iay(k)? T gy (159)

n=0
where one can prove the validity of the first equality in the last equation by the identity

(DI 1) = (1" (D" 1), (160)

For the non-diagonal matrix elements Afone easily obtains, due to (20), (120) and (155),
the following expression:

- -— _ 1
Ao = Ay = |111D}(:)kD(_)\—)k—_
LA+ A

k k (D(_—)n . 1)(D(+)m . 1)
=i Y@k - —ml—D

n=0 m=0 ()Ll + )“1)2]&1_’”_"

(161)

For the matrice€ and D (the matrixD is defined through the matri® analogously to the
case of the definitior throughC by the use of (120)), due to (22), (120) and (143), one
obtains

e 1 w1
ay(D* 1) (D§1>’< : k_1> —ay(D})* - (D' /\:1)

C = 1 i (162)
Ik -k Dk Ok
otz (s 1) otz n (o 1)
p@e. LY pox 1 pok. 1 (D 1)
- ar\ Y A D, a Mmooy -
D= 1 1 (163)

1 1
— [ Mk (—)k — [ p®k (k
(0% LYoy (o0 Loy
Then with the use of (159)-(163) one can obtain, by formulae (141) and (142), the
corresponding pure rational multiple pole solutions of the DS system (127) and equations (136)
and (137). These solutions are singular. The study of the structure of singularities of such

solutions may be an interesting problem and will be done elsewhere.
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